IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02372-1.html
   My bibliography  Save this article

Exact reliability formula for precision agriculture through copula repair approach

Author

Listed:
  • Praveen Kumar Poonia

    (University of Technology and Applied Sciences
    College of Computing and Information Sciences)

Abstract

The Gumbel-Hougaard family’s invention of copula distribution paved the way for new research, and it has been widely applied in recent years to a range of series–parallel multi-state complicated engineering systems, but not to agricultural applications. Recent study undertaken by a variety of organizations reveals that food grain production is not keeping up with population growth. Many technocrats use wireless sensing networks to collect and analyze data to increase production; nevertheless, by focusing on general repair, they fall short of their goal. To avoid this problem and restore the broken system as soon as achievable, in this paper we have developed a reliability formula in a way that numerical solutions can be obtained systematically in a reasonable computational time for precision agriculture that makes use of the copula distribution. This paper aims to analyze the various reliability measures such as availability, reliability, mean time to failure, and cost analysis of a wireless computer network for precision agriculture made up of three subsystems in series configuration. Hazard rates of all the units are assumed to be constant and follow exponential distribution, while repair supports general distribution and copula distribution. The system is analyzed by supplementary variable technique, Laplace transformation and Gumbel-Hougaard copula distribution. This paper we have used a significant feature of copula distribution under catastrophic failure by assuming two different forms of failure between neighboring transitions from which one can check the behavioral analysis of the designed system. This research may be beneficial for precision agriculture whereas a k-out-of-n-type configuration exists.

Suggested Citation

  • Praveen Kumar Poonia, 2024. "Exact reliability formula for precision agriculture through copula repair approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3725-3736, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02372-1
    DOI: 10.1007/s13198-024-02372-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02372-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02372-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Kalaivani & R. Kannan, 2022. "Estimation of reliability function and mean time to system failure for k-out-of-n systems using Weibull failure time model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2195-2207, October.
    2. Bastiaanssen, Wim G. M. & Molden, David J. & Makin, Ian W., 2000. "Remote sensing for irrigated agriculture: examples from research and possible applications," Agricultural Water Management, Elsevier, vol. 46(2), pages 137-155, December.
    3. Monika Gahlot & V.V. Singh & Hamisu Ismial Ayagi & C.K. Goel, 2018. "Performance assessment of repairable system in series configuration under different types of failure and repair policies using copula linguistics," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 12(4), pages 348-363.
    4. Bei Wu & Lirong Cui, 2022. "On reliability analysis of a load-sharing k-out-of-n: G system with interacting Markov subsystems," International Journal of Production Research, Taylor & Francis Journals, vol. 60(7), pages 2331-2345, April.
    5. Praveen Kumar Poonia, 2021. "Performance assessment of a multi-state computer network system in series configuration using copula repair," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 15(1/2), pages 68-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhash Malik & P. C. Tewari, 2023. "Performability and maintenance decisions for coal ash handling system of a subcritical thermal power plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 45-54, February.
    2. Anna‐Katharina Hornidge & Lisa Oberkircher & Bernhard Tischbein & Gunther Schorcht & Anik Bhaduri & Ahmad M. Manschadi, 2011. "Reconceptualizing water management in Khorezm, Uzbekistan," Natural Resources Forum, Blackwell Publishing, vol. 35(4), pages 251-268, November.
    3. Corbari, Chiara & Paciolla, Nicola & Rossi, Greta & Mancini, Marco, 2023. "A double two-sources energy-water balance model for improving evapotranspiration estimates and irrigation management in fruit trees fields," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Martin de Santa Olalla, F. & Calera, A. & Dominguez, A., 2003. "Monitoring irrigation water use by combining Irrigation Advisory Service, and remotely sensed data with a geographic information system," Agricultural Water Management, Elsevier, vol. 61(2), pages 111-124, June.
    5. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    6. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    7. Yongqing Zhao & Rendong Li & Juan Qiu & Xiangdong Sun & Lu Gao & Mingquan Wu, 2019. "Prediction of Human Brucellosis in China Based on Temperature and NDVI," IJERPH, MDPI, vol. 16(21), pages 1-15, November.
    8. Muhammad Idris Abubakar & Vijay Vir Singh, 2019. "Performance assessment of industrial system (African Textile Manufacturers, LTD) through copula linguistic approach," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 5-22.
    9. Xiaoxiao Li & Man Yu & Jing Ma & Zhanbin Luo & Fu Chen & Yongjun Yang, 2018. "Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    10. Yotsaphat Kittichotsatsawat & Varattaya Jangkrajarng & Korrakot Yaibuathet Tippayawong, 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    11. Yonela Mndela & Naledzani Ndou & Adolph Nyamugama, 2023. "Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    12. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    13. Er-Raki, S. & Chehbouni, A. & Guemouria, N. & Duchemin, B. & Ezzahar, J. & Hadria, R., 2007. "Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region," Agricultural Water Management, Elsevier, vol. 87(1), pages 41-54, January.
    14. Jongschaap, Raymond E.E., 2007. "Sensitivity of a crop growth simulation model to variation in LAI and canopy nitrogen used for run-time calibration," Ecological Modelling, Elsevier, vol. 200(1), pages 89-98.
    15. Hemakumara, H. M. & Chandrapala, Lalith & Moene, Arnold F., 2003. "Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer," Agricultural Water Management, Elsevier, vol. 58(2), pages 109-122, February.
    16. Hamze, Mohamad & Cheviron, Bruno & Baghdadi, Nicolas & Lo, Madiop & Courault, Dominique & Zribi, Mehrez, 2023. "Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model," Agricultural Water Management, Elsevier, vol. 283(C).
    17. Elshaikh, Ahmed E. & Jiao, Xiyun & Yang, Shi-hong, 2018. "Performance evaluation of irrigation projects: Theories, methods, and techniques," Agricultural Water Management, Elsevier, vol. 203(C), pages 87-96.
    18. Folhes, M.T. & Rennó, C.D. & Soares, J.V., 2009. "Remote sensing for irrigation water management in the semi-arid Northeast of Brazil," Agricultural Water Management, Elsevier, vol. 96(10), pages 1398-1408, October.
    19. Abdul-Wadood Moomen & Lily Lisa Yevugah & Louvis Boakye & Jeff Dacosta Osei & Francis Muthoni, 2024. "Review of Applications of Remote Sensing towards Sustainable Agriculture in the Northern Savannah Regions of Ghana," Agriculture, MDPI, vol. 14(4), pages 1-22, March.
    20. Alessandro Scandiffio, 2021. "Parametric Definition of Slow Tourism Itineraries for Experiencing Seasonal Landscapes. Application of Sentinel-2 Imagery to the Rural Paddy-Rice Landscape in Northern Italy," Sustainability, MDPI, vol. 13(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02372-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.