IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i10d10.1007_s13198-024-02484-8.html
   My bibliography  Save this article

Zero crossing point detection in a distorted sinusoidal signal using random forest classifier

Author

Listed:
  • Venkataramana Veeramsetty

    (SR University)

  • Pravallika Jadhav

    (SR University)

  • Eslavath Ramesh

    (SR University)

  • Srividya Srinivasula

    (SR University)

Abstract

The identification of zero-crossing points in a sinusoidal signal is critical in a variety of electrical applications, including protection of power system components and designing of controllers. In this article, 96 datasets are generated from a deformed sinusoidal waveforms using MATLAB. MATLAB generates deformed sinusoidal waves with varying amounts of noise and harmonics. In this study, a random forest model is utilized to estimate the zero crossing point in a deformed waveform using input characteristics such as the slope, intercept, correlation, and RMSE. The random forest model was developed and evaluated in the Google Colab platform. According to simulation data, the model based on random forest predicts the zero-crossing point more accurately than other models such as logistic regression and decision tree classifier.

Suggested Citation

  • Venkataramana Veeramsetty & Pravallika Jadhav & Eslavath Ramesh & Srividya Srinivasula, 2024. "Zero crossing point detection in a distorted sinusoidal signal using random forest classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4806-4824, October.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02484-8
    DOI: 10.1007/s13198-024-02484-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02484-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02484-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    2. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    3. Hao Yang & Maoyu Ran & Chaoqun Zhuang, 2022. "Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02484-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.