IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i4d10.1007_s13198-023-01913-4.html
   My bibliography  Save this article

Legislative optimization algorithm for real power loss diminishing and voltage reliability escalation

Author

Listed:
  • Lenin Kanagasabai

    (Prasad V. Potluri Siddhartha Institute Of Technology)

Abstract

In this paper Legislative Optimization (LO) algorithm has been applied for solving the power loss lessening problem. Legislative Optimization (LO) algorithm is stimulated by the election procedure legislative body. Every citizen in the country had a wish and will to vote in order to elect a democratic government. There will be formation of political party, identification of constituency for contesting, campaign for the election etc. In this paper these procedure are imitated and mathematically formulated to design the Legislative Optimization (LO) algorithm. Exclamation stratagem is based on discrete arguments, is integrated in the Legislative Optimization (LO) algorithm. Exclamation stratagem will overcome the inadequacies dwindling into local optimal solution. Subsequent to the usage of the exclamation stratagem a derivative optimum solution is engendered and it equated with the elucidation engendered by Legislative Optimization (LO) algorithm. If the elucidation is superior to engendered solutions by LO approach, then it will be swapped; or else, the solution engendered by Legislative Optimization (LO) algorithm will be engaged. Procurement of a virtuous equilibrium between exploration and exploitation is the important constituent of optimization methods. Comprehensive exploration includes the examination of new-fangled probable zones. Consecutively, it is risky to uphold the multiplicity of the populace. Confined exploitation encompasses probing for a great meticulousness elucidation in a minor zone, which is exposed through comprehensive examination. Extreme comprehensive exploration leads to sluggish convergence promptness, however disproportionate confined exploitation fallouts in early convergence..In initial period of iterations, a loftier Acclimatize factor value can create a superior stride, which points to sturdier comprehensive exploration. At this period, the deteriorating promptness of Acclimatize factor requires to be loftier. In last phase iterations, a minor Acclimatize factor value can create a minor stride, which points to sturdier confined exploitation. Nevertheless, the minor Acclimatize factor value tip-offs to an inferior populace multiplicity and fallouts in an upper possibility at confined optimum value. Legitimacy of the Legislative Optimization (LO) algorithm is corroborated in IEEE test systems.

Suggested Citation

  • Lenin Kanagasabai, 2023. "Legislative optimization algorithm for real power loss diminishing and voltage reliability escalation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1197-1207, August.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01913-4
    DOI: 10.1007/s13198-023-01913-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-01913-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-01913-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahir Sahli & Abdellatif Hamouda & Abdelghani Bekrar & Damien Trentesaux, 2018. "Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm †," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Mohamed Ebeed & Ayman Alhejji & Salah Kamel & Francisco Jurado, 2020. "Solving the Optimal Reactive Power Dispatch Using Marine Predators Algorithm Considering the Uncertainties in Load and Wind-Solar Generation Systems," Energies, MDPI, vol. 13(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    2. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    3. Sulaiman Z. Almutairi & Emad A. Mohamed & Fayez F. M. El-Sousy, 2023. "A Novel Adaptive Manta-Ray Foraging Optimization for Stochastic ORPD Considering Uncertainties of Wind Power and Load Demand," Mathematics, MDPI, vol. 11(11), pages 1-35, June.
    4. Lenin Kanagasabai, 2022. "Buoyancy based optimization algorithm for real power loss diminution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2442-2457, October.
    5. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    6. Lenin Kanagasabai, 2022. "Mathematics based calculation and stemonitis inspired optimization algorithms for loss reduction and power solidity augmentation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2710-2726, October.
    7. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    9. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    10. Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
    11. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    12. Umar Waleed & Abdul Haseeb & Muhammad Mansoor Ashraf & Faisal Siddiq & Muhammad Rafiq & Muhammad Shafique, 2022. "A Multiobjective Artificial-Hummingbird-Algorithm-Based Framework for Optimal Reactive Power Dispatch Considering Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-23, December.
    13. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    14. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    15. Mini Vishnu & Sunil Kumar T. K., 2020. "An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization," Energies, MDPI, vol. 13(11), pages 1-21, June.
    16. Park, Sung-Won & Son, Sung-Yong, 2020. "Interaction-based virtual power plant operation methodology for distribution system operator’s voltage management," Applied Energy, Elsevier, vol. 271(C).
    17. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2019. "Optimal Capacitor Bank Allocation in Electricity Distribution Networks Using Metaheuristic Algorithms," Energies, MDPI, vol. 12(22), pages 1-36, November.
    18. S. N. V. S. K. Chaitanya & R. Ashok Bakkiyaraj & B. Venkateswara Rao, 2023. "Multi objective optimal reactive power dispatch for enrichment of power system behavior using modified ant lion optimizer," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 133-142, March.
    19. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    20. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01913-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.