IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i2d10.1007_s13198-021-01586-x.html
   My bibliography  Save this article

Demand forecasting model of coal logistics based on drosophila-grey neural network

Author

Listed:
  • Shudong Wang

    (Anhui University of Science and Technology
    Huainan Union University)

  • Qinfeng Xing

    (Anhui University of Science and Technology)

  • Xiangqian Wang

    (Anhui University of Science and Technology)

  • Qian Wu

    (Anhui University of Science and Technology)

Abstract

The demanding forecast of coal logistics is the premise of integrating coal logistics resources and improving its efficiency. First, we considered the principles of index system construction and many other factors and chose GDP, average consumption, value added of the secondary industry, coal import and export volume, urban population quantity, coal production, total energy consumption, average annual rain PH, and coal consumption as a measure of indicators. Then, based on the idea of a combination model, the combination of grey model and BP neural network is selected, and FOA-GNNM is used to predict the coal consumption in China from 2018 to 2022, and the coal transportation volume in railway, highway and waterway is further calculated. The findings can help for better understanding of coal logistics, and then the following suggestions are proposed to improve its demanding forecast for China's future coal logistics operation arrangements, route planning and reserve system construction.

Suggested Citation

  • Shudong Wang & Qinfeng Xing & Xiangqian Wang & Qian Wu, 2023. "Demand forecasting model of coal logistics based on drosophila-grey neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 807-815, April.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:2:d:10.1007_s13198-021-01586-x
    DOI: 10.1007/s13198-021-01586-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01586-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01586-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaklan, Aleksandar & Cullmann, Astrid & Neumann, Anne & von Hirschhausen, Christian, 2012. "The globalization of steam coal markets and the role of logistics: An empirical analysis," Energy Economics, Elsevier, vol. 34(1), pages 105-116.
    2. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
    3. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    4. Hongze Li & Sen Guo & Huiru Zhao & Chenbo Su & Bao Wang, 2012. "Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 5(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    2. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Zaklan, Aleksandar & Abrell, Jan & Neumann, Anne, 2016. "Stationarity changes in long-run energy commodity prices," Energy Economics, Elsevier, vol. 59(C), pages 96-103.
    4. Jian Luo & Yukai Zheng & Tao Hong & An Luo & Xueqi Yang, 2024. "Fuzzy support vector regressions for short-term load forecasting," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 363-385, September.
    5. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    6. Ying-Yi Hong & Ti-Hsuan Yu & Ching-Yun Liu, 2013. "Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition," Energies, MDPI, vol. 6(12), pages 1-16, November.
    7. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    8. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    9. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    10. Guo, Yanfeng & Wen, Xiaoqian & Wu, Yanrui & Guo, Xiumei, 2016. "How is China's coke price related with the world oil price? The role of extreme movements," Economic Modelling, Elsevier, vol. 58(C), pages 22-33.
    11. Ali Kamil Gumar & Funda Demir, 2022. "Solar Photovoltaic Power Estimation Using Meta-Optimized Neural Networks," Energies, MDPI, vol. 15(22), pages 1-15, November.
    12. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    13. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    14. Lianhui Li & Chunyang Mu & Shaohu Ding & Zheng Wang & Runyang Mo & Yongfeng Song, 2015. "A Robust Weighted Combination Forecasting Method Based on Forecast Model Filtering and Adaptive Variable Weight Determination," Energies, MDPI, vol. 9(1), pages 1-22, December.
    15. Olsson, Olle & Hillring, Bengt, 2014. "The wood fuel market in Denmark – Price development, market efficiency and internationalization," Energy, Elsevier, vol. 78(C), pages 141-148.
    16. Xin, Haihui & Tian, Wenjiang & Zhou, Banghao & Qi, Xu-yao & Li, Jianfeng & Wu, Jinfeng & Wang, De-ming, 2023. "Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen," Energy, Elsevier, vol. 268(C).
    17. Ashfaq Ahmad & Nadeem Javaid & Abdul Mateen & Muhammad Awais & Zahoor Ali Khan, 2019. "Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach," Energies, MDPI, vol. 12(1), pages 1-21, January.
    18. Wai-Ming To & Peter Ka Chun Lee & Tsz-Ming Lai, 2017. "Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong," Energies, MDPI, vol. 10(7), pages 1-16, June.
    19. Peng Jiang & Jun Dong & Hui Huang, 2019. "Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm," Energies, MDPI, vol. 12(7), pages 1-24, April.
    20. Papież, Monika & Śmiech, Sławomir, 2013. "Causality-in-mean and causality-in-variance within the international steam coal market," Energy Economics, Elsevier, vol. 36(C), pages 594-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:2:d:10.1007_s13198-021-01586-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.