Application of multimedia network english listening model based on confidence learning algorithm for speech recognition
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-021-01433-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Radu Ioan Boţ & Ernö Robert Csetnek & Szilárd Csaba László, 2016. "An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 3-25, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boţ, Radu Ioan & Kanzler, Laura, 2021. "A forward-backward dynamical approach for nonsmooth problems with block structure coupled by a smooth function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Xianfu Wang & Ziyuan Wang, 2022. "Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems," Computational Optimization and Applications, Springer, vol. 82(2), pages 441-463, June.
- Dang Hieu, 2018. "An inertial-like proximal algorithm for equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 399-415, December.
- Zhongming Wu & Min Li & David Z. W. Wang & Deren Han, 2017. "A Symmetric Alternating Direction Method of Multipliers for Separable Nonconvex Minimization Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-27, December.
- Zhili Ge & Zhongming Wu & Xin Zhang & Qin Ni, 2023. "An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 821-844, August.
- Christian Kanzow & Patrick Mehlitz, 2022. "Convergence Properties of Monotone and Nonmonotone Proximal Gradient Methods Revisited," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 624-646, November.
- Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.
More about this item
Keywords
English listening; Multimedia network; Confidence learning algorithm for speech recognition; Lattice; SVM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01433-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.