IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i5d10.1007_s13198-021-01144-5.html
   My bibliography  Save this article

Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology

Author

Listed:
  • Priyamvada

    (University of Delhi)

  • Prerna Gautam

    (University of Delhi)

  • Aditi Khanna

    (University of Delhi)

Abstract

With the rapid development of sustainable practices, supply chain members are interested in performing well, not only economically but also environmentally. The present paper develops an imperfect production inventory model where items are prone to deterioration. The bad quality items so produced are separated and sold to a different market. However, the deterioration calls for effective techniques to curb the subsequent losses, for which an investment in preservation technology is considered. The carbon emissions associated with the production, storage, and preservation processes are considered. Moreover, some amount of waste is produced as a by-product of every production process, this waste is sent for proper disposal at a cost. Further, an attempt is made to implement sustainable production policies for minimizing carbon footprints. Hence, an inventory framework is proposed to meet the current environmental and economic challenges, and formulate policies that contribute to sustainable development. The study jointly optimizes the non-production time and invested amount in the preservation process to minimize the total costs. Numerical investigation and sensitivity analysis are done to establish key model features. Findings suggest the decision-makers with better insights to deal with deterioration effectively and at the same time remain environment savvy.

Suggested Citation

  • Priyamvada & Prerna Gautam & Aditi Khanna, 2021. "Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 910-918, October.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01144-5
    DOI: 10.1007/s13198-021-01144-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01144-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01144-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daryanto, Yosef & Wee, Hui Ming & Astanti, Ririn Diar, 2019. "Three-echelon supply chain model considering carbon emission and item deterioration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 368-383.
    2. Sudarshan Bardhan & Haimanti Pal & Bibhas Chandra Giri, 2019. "Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand," Operational Research, Springer, vol. 19(2), pages 347-368, June.
    3. Chandra Jaggi & Aditi Khanna & Priyanka Verma, 2011. "Two-warehouse partial backlogging inventory model for deteriorating items with linear trend in demand under inflationary conditions," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1185-1196.
    4. Umakanta Mishra, 2016. "A waiting time deterministic inventory model for perishable items in stock and time dependent demand," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 294-304, December.
    5. Monami Das Roy & Shib Sankar Sana, 2021. "Inter-dependent lead-time and ordering cost reduction strategy: a supply chain model with quality control, lead-time dependent backorder and price-sensitive stochastic demand," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 690-710, September.
    6. M Ben-Daya & M Hariga, 2000. "Economic lot scheduling problem with imperfect production processes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 875-881, July.
    7. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    8. Salameh, M. K. & Jaber, M. Y., 2000. "Economic production quantity model for items with imperfect quality," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 59-64, March.
    9. Dye, Chung-Yuan & Hsieh, Tsu-Pang, 2012. "An optimal replenishment policy for deteriorating items with effective investment in preservation technology," European Journal of Operational Research, Elsevier, vol. 218(1), pages 106-112.
    10. B.C. Giri & H. Pal & T. Maiti, 2017. "A vendor-buyer supply chain model for time-dependent deteriorating item with preservation technology investment," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 10(4), pages 431-449.
    11. Dey, O. & Giri, B.C., 2014. "Optimal vendor investment for reducing defect rate in a vendor–buyer integrated system with imperfect production process," International Journal of Production Economics, Elsevier, vol. 155(C), pages 222-228.
    12. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    13. Hsu, P.H. & Wee, H.M. & Teng, H.M., 2010. "Preservation technology investment for deteriorating inventory," International Journal of Production Economics, Elsevier, vol. 124(2), pages 388-394, April.
    14. Sudipta Sinha & Nikunja Mohan Modak & Shib Sankar Sana, 2020. "An entropic order quantity inventory model for quality assessment considering price sensitive demand," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 88-103, March.
    15. Sana, Shib Sankar, 2020. "Price competition between green and non green products under corporate social responsible firm," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabajyoti Bhattacharjee & Nabendu Sen & Sanjukta Malakar, 2022. "A sustainable retailer’s inventory model to study the partial replacement for deteriorating items with variable shelf-life," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1502-1521, December.
    2. Ajoy Hatibaruah & Sumit Saha, 2023. "An inventory model for two-parameter Weibull distributed ameliorating and deteriorating items with stock and advertisement frequency dependent demand under trade credit and preservation technology," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 951-1002, June.
    3. Yosef Daryanto & Djoko Setyanto, 2023. "Production Inventory Optimization Considering Direct and Indirect Carbon Emissions under a Cap-and-Trade Regulation," Logistics, MDPI, vol. 7(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebatjane, Makoena, 2022. "The impact of preservation technology investments on lot-sizing and shipment strategies in a three-echelon food supply chain involving growing and deteriorating items," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Oshmita Dey, 2019. "A fuzzy random integrated inventory model with imperfect production under optimal vendor investment," Operational Research, Springer, vol. 19(1), pages 101-115, March.
    3. Vandana & A. K. Das, 2022. "Two-warehouse supply chain model under preservation technology and stochastic demand with shortages," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1587-1612, December.
    4. Hsu, Jia-Tzer & Hsu, Lie-Fern, 2013. "An EOQ model with imperfect quality items, inspection errors, shortage backordering, and sales returns," International Journal of Production Economics, Elsevier, vol. 143(1), pages 162-170.
    5. Ivan Darma Wangsa & Hui Ming Wee & Shih-Hsien Tseng, 2019. "A coordinated vendor–buyer system considering loss and damage claims, insurance cost and stochastic lead time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 384-398, June.
    6. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    7. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    8. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    9. Rini & Priyamvada & Chandra K. Jaggi, 2021. "Sustainable and flexible production system for a deteriorating item with quality consideration," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 951-960, October.
    10. Dey, O. & Giri, B.C., 2014. "Optimal vendor investment for reducing defect rate in a vendor–buyer integrated system with imperfect production process," International Journal of Production Economics, Elsevier, vol. 155(C), pages 222-228.
    11. Huang, Chao-Kuei, 2004. "An optimal policy for a single-vendor single-buyer integrated production-inventory problem with process unreliability consideration," International Journal of Production Economics, Elsevier, vol. 91(1), pages 91-98, September.
    12. Nasr, Walid W. & Jaber, Mohamad Y., 2019. "Supplier development in a two-level lot sizing problem with non-conforming items and learning," International Journal of Production Economics, Elsevier, vol. 216(C), pages 349-363.
    13. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    14. Sana, Shib Sankar & Goyal, Suresh Kumar & Chaudhuri, Kripasindhu, 2007. "An imperfect production process in a volume flexible inventory model," International Journal of Production Economics, Elsevier, vol. 105(2), pages 548-559, February.
    15. Sudarshan Bardhan & Haimanti Pal & Bibhas Chandra Giri, 2019. "Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand," Operational Research, Springer, vol. 19(2), pages 347-368, June.
    16. Lee, Sunghee & Kim, Daeki, 2014. "An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 161-170.
    17. Liu, Aijun & Zhu, Qiuyun & Xu, Lei & Lu, Qiang & Fan, Youqing, 2021. "Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    18. Chaitanyakumar N. Rapolu & Deepa H. Kandpal, 2020. "Joint pricing, advertisement, preservation technology investment and inventory policies for non-instantaneous deteriorating items under trade credit," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 274-300, June.
    19. Yosef Daryanto & Hui Ming Wee & Gede Agus Widyadana, 2019. "Low Carbon Supply Chain Coordination for Imperfect Quality Deteriorating Items," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    20. Umakanta Mishra & Leopoldo Eduardo Cárdenas-Barrón & Sunil Tiwari & Ali Akbar Shaikh & Gerardo Treviño-Garza, 2017. "An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment," Annals of Operations Research, Springer, vol. 254(1), pages 165-190, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01144-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.