IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v21y2012i3d10.1007_s10726-010-9216-4.html
   My bibliography  Save this article

Fuzzy Development of Multiple Response Optimization

Author

Listed:
  • Mahdi Bashiri

    (Shahed University)

  • Seyed Javad Hosseininezhad

    (Iran University of Science and Technology)

Abstract

This paper proposes a developed approach to Multiple Response Optimization (MRO) in two categories; responses without replicates and with some replicates based on fuzzy concepts. At first, the problem without any replicate in responses is investigated, and a fuzzy Decision Support System (DSS) is proposed based on Fuzzy Inference System (FIS) for MRO. The proposed methodology provides a fuzzy approach considering uncertainty in decision making environment. After calculating desirability of each response, total desirability of each experiment is measured by using values of each response desirability, applying membership function and fuzzy rules expressed by experts. Then Response Surface Methodology (RSM) is applied to fit a regression model between total desirability and controllable factors and optimize them. Next, a methodology is proposed for MRO with some replicates in responses which optimizes mean and variance simultaneously by applying fuzzy concepts. After introducing Deviation function based on robustness concept and using desirability function, a two objective problem is constituted. At last, a fuzzy programming is expressed to solve the problem applying degree of satisfaction from each objective. Then the problem is converted to a single objective model with the goals of increasing desirability and robustness simultaneously. The obtained optimum factor levels are fuzzy numbers so that a bigger satisfactory region could be provided. Finally, two numerical examples are expressed to illustrate the proposed methodologies for multiple responses without replicates and with some replicates.

Suggested Citation

  • Mahdi Bashiri & Seyed Javad Hosseininezhad, 2012. "Fuzzy Development of Multiple Response Optimization," Group Decision and Negotiation, Springer, vol. 21(3), pages 417-438, May.
  • Handle: RePEc:spr:grdene:v:21:y:2012:i:3:d:10.1007_s10726-010-9216-4
    DOI: 10.1007/s10726-010-9216-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-010-9216-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-010-9216-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemzadeh, Reza B. & Bashiri, Mahdi & Atkinson, Anthony C. & Noorossana, Rassoul, 2008. "A general framework for multiresponse optimization problems based on goal programming," European Journal of Operational Research, Elsevier, vol. 189(2), pages 421-429, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nha, Vo Thanh & Shin, Sangmun & Jeong, Seong Hoon, 2013. "Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment," European Journal of Operational Research, Elsevier, vol. 229(2), pages 505-517.
    2. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    3. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
    4. Hejazi, Taha-Hossein & Badri, Hossein & Yang, Kai, 2019. "A Reliability-based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1016-1025.
    5. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:21:y:2012:i:3:d:10.1007_s10726-010-9216-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.