IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i2p505-517.html
   My bibliography  Save this article

Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment

Author

Listed:
  • Nha, Vo Thanh
  • Shin, Sangmun
  • Jeong, Seong Hoon

Abstract

The primary objective of this paper is to develop a new robust design (RD) optimization procedure based on a lexicographical dynamic goal programming (LDGP) approach for implementing time-series based multi-responses, while the conventional experimental design formats and frameworks may implement static responses. First, a parameter estimation method for time-dependent pharmaceutical responses (i.e., drug release and gelation kinetics) is proposed using the dual response estimation concept that separately estimates the response functions of the mean and variance, as a part of response surface method. Second, a multi-objective RD optimization model using the estimated response functions of both the process mean and variance is proposed by incorporating a time-series components within a dynamic modeling environment. Finally, a pharmaceutical case study associated with a generic drug development process is conducted for verification purposes. Based on the case study results, we conclude that the proposed LDGP approach effectively provides the optimal drug formulations with significantly small biases and MSE values, compared to other models.

Suggested Citation

  • Nha, Vo Thanh & Shin, Sangmun & Jeong, Seong Hoon, 2013. "Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment," European Journal of Operational Research, Elsevier, vol. 229(2), pages 505-517.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:2:p:505-517
    DOI: 10.1016/j.ejor.2013.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713001355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemzadeh, Reza B. & Bashiri, Mahdi & Atkinson, Anthony C. & Noorossana, Rassoul, 2008. "A general framework for multiresponse optimization problems based on goal programming," European Journal of Operational Research, Elsevier, vol. 189(2), pages 421-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    2. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
    3. Mahdi Bashiri & Seyed Javad Hosseininezhad, 2012. "Fuzzy Development of Multiple Response Optimization," Group Decision and Negotiation, Springer, vol. 21(3), pages 417-438, May.
    4. Hejazi, Taha-Hossein & Badri, Hossein & Yang, Kai, 2019. "A Reliability-based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1016-1025.
    5. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:2:p:505-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.