IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v19y2020i3d10.1007_s10700-020-09324-x.html
   My bibliography  Save this article

Robust parallel-batching scheduling with fuzzy deteriorating processing time and variable delivery time in smart manufacturing

Author

Listed:
  • Shaojun Lu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Jun Pei

    (Hefei University of Technology
    University of Florida
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Xinbao Liu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Panos M. Pardalos

    (University of Florida)

Abstract

Smart manufacturing is an effective way to improve the efficiency of resource utilization and reduce the response time of making joint decisions for the enterprises. Though, with the globalization of manufacturing enterprises, manufacturing optimization problems often occur in complex manufacturing systems under the deteriorating and fuzzy environment, which brings many challenges to smart manufacturing, such as the lack of coordinating scheduling strategies to guarantee the low latency requirement. This paper investigates a robust parallel-batching scheduling problem with fuzzy processing time and past-sequence-dependent delivery time. Some structural properties are first identified, and an optimal algorithm is further developed for the single-machine scheduling problem. Then, the problem is proved to be NP-hard. We thus design a hybrid Multi-Verse Optimizer-Variable Neighborhood Search algorithm to solve the investigated problem in a reasonable time. Abundant experiments of different scales are conducted to verify the performance of the proposed hybrid method with a comparison of the state-of-the-art methods. The proposed hybrid meta-heuristic shows excellent results, robustness, and computational time performance under various experiments.

Suggested Citation

  • Shaojun Lu & Jun Pei & Xinbao Liu & Panos M. Pardalos, 2020. "Robust parallel-batching scheduling with fuzzy deteriorating processing time and variable delivery time in smart manufacturing," Fuzzy Optimization and Decision Making, Springer, vol. 19(3), pages 333-357, September.
  • Handle: RePEc:spr:fuzodm:v:19:y:2020:i:3:d:10.1007_s10700-020-09324-x
    DOI: 10.1007/s10700-020-09324-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-020-09324-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-020-09324-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Lijun & Zhang, Zhenzhen & Zhang, Defu & Leung, Stephen C.H., 2018. "A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 265(3), pages 843-859.
    2. Liu, Ming & Wang, Shijin & Chu, Chengbin, 2013. "Scheduling deteriorating jobs with past-sequence-dependent delivery times," International Journal of Production Economics, Elsevier, vol. 144(2), pages 418-421.
    3. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    4. Sakawa, Masatoshi & Kubota, Ryo, 2000. "Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 120(2), pages 393-407, January.
    5. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    6. Xiqin Wen & Mingchao Yan & Jieyu Xian & Rui Yue & Anhua Peng, 2016. "Supplier selection in supplier chain management using Choquet integral-based linguistic operators under fuzzy heterogeneous environment," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 307-330, September.
    7. Shi-Sheng Li & Ren-Xia Chen & Qi Feng & Cheng-Wen Jiao, 2019. "Parallel-machine scheduling with job-dependent cumulative deterioration effect and rejection," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 957-971, October.
    8. Koulamas, Christos & Kyparisis, George J., 2010. "Single-machine scheduling problems with past-sequence-dependent delivery times," International Journal of Production Economics, Elsevier, vol. 126(2), pages 264-266, August.
    9. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    2. Jun Pei & Xinbao Liu & Panos M. Pardalos & Wenjuan Fan & Shanlin Yang, 2017. "Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times," Annals of Operations Research, Springer, vol. 249(1), pages 175-195, February.
    3. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    4. Jun Pei & Xinbao Liu & Panos M. Pardalos & Athanasios Migdalas & Shanlin Yang, 2017. "Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine," Journal of Global Optimization, Springer, vol. 67(1), pages 251-262, January.
    5. Min Kong & Xinbao Liu & Jun Pei & Panos M. Pardalos & Nenad Mladenovic, 2020. "Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines," Journal of Global Optimization, Springer, vol. 78(4), pages 693-715, December.
    6. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    7. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    8. Ji-Bo Wang & Bo Cui & Ping Ji & Wei-Wei Liu, 2021. "Research on single-machine scheduling with position-dependent weights and past-sequence-dependent delivery times," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 290-303, February.
    9. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
    10. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    11. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    12. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. C-C He & C-C Wu & W-C Lee, 2009. "Branch-and-bound and weight-combination search algorithms for the total completion time problem with step-deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1759-1766, December.
    14. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    15. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    16. Mostafa Khatami & Amir Salehipour, 2021. "Coupled task scheduling with time-dependent processing times," Journal of Scheduling, Springer, vol. 24(2), pages 223-236, April.
    17. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    18. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    19. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    20. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:19:y:2020:i:3:d:10.1007_s10700-020-09324-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.