IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v4y2012i2d10.1007_s12543-012-0109-x.html
   My bibliography  Save this article

Priority based fuzzy goal programming technique to fractional fuzzy goals using dynamic programming

Author

Listed:
  • Animesh Biswas

    (University of Kalyani)

  • Shyamali Dewan

    (Bhairab Ganguly College)

Abstract

This paper describes the use of preemptive priority based fuzzy goal programming method to fuzzy multiobjective fractional decision making problems under the framework of multistage dynamic programming. In the proposed approach, the membership functions for the defined objective goals with fuzzy aspiration levels are determined first without linearizing the fractional objectives which may have linear or nonlinear forms. Then the problem is solved recursively for achievement of the highest membership value (unity) by using priority based goal programming methodology at each decision stages and thereby identifying the optimal decision in the present decision making arena. A numerical example is solved to represent potentiality of the proposed approach.

Suggested Citation

  • Animesh Biswas & Shyamali Dewan, 2012. "Priority based fuzzy goal programming technique to fractional fuzzy goals using dynamic programming," Fuzzy Information and Engineering, Springer, vol. 4(2), pages 165-180, June.
  • Handle: RePEc:spr:fuzinf:v:4:y:2012:i:2:d:10.1007_s12543-012-0109-x
    DOI: 10.1007/s12543-012-0109-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-012-0109-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-012-0109-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kornbluth, Jonathan S. H. & Steuer, Ralph E., 1981. "Goal programming with linear fractional criteria," European Journal of Operational Research, Elsevier, vol. 8(1), pages 58-65, September.
    2. Jonathan S. H. Kornbluth & Ralph E. Steuer, 1981. "Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 27(9), pages 1024-1039, September.
    3. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    4. Romero, Carlos, 1986. "A survey of generalized goal programming (1970-1982)," European Journal of Operational Research, Elsevier, vol. 25(2), pages 183-191, May.
    5. Kornbluth, Jsh, 1973. "A survey of goal programming," Omega, Elsevier, vol. 1(2), pages 193-205, April.
    6. Lin, W Thomas, 1980. "A survey of goal programming applications," Omega, Elsevier, vol. 8(1), pages 115-117.
    7. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    8. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    9. Weeda, P. J., 1978. "A dynamic programming formulation for the one machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 2(4), pages 298-300, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pal, Bijay Baran & Nath Moitra, Bhola, 2003. "A goal programming procedure for solving problems with multiple fuzzy goals using dynamic programming," European Journal of Operational Research, Elsevier, vol. 144(3), pages 480-491, February.
    2. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    3. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    4. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    5. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    6. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    7. M Larbani & B Aouni, 2011. "A new approach for generating efficient solutions within the goal programming model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 175-182, January.
    8. Sharma, Dinesh K. & Jana, R.K., 2009. "Fuzzy goal programming based genetic algorithm approach to nutrient management for rice crop planning," International Journal of Production Economics, Elsevier, vol. 121(1), pages 224-232, September.
    9. Costa, Joao Paulo, 2007. "Computing non-dominated solutions in MOLFP," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1464-1475, September.
    10. Goedhart, Marc H. & Spronk, Jaap, 1995. "Financial planning with fractional goals," European Journal of Operational Research, Elsevier, vol. 82(1), pages 111-124, April.
    11. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    12. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    13. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    14. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    15. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    16. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    17. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    18. Bao-Ngoc Tong & Cheng-Ping Cheng & Lien-Wen Liang & Yi-Jun Liu, 2023. "Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    19. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    20. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:4:y:2012:i:2:d:10.1007_s12543-012-0109-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.