IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v36y2024i3d10.1007_s10696-023-09526-6.html
   My bibliography  Save this article

Nursing care flexibility in chemotherapy appointment scheduling

Author

Listed:
  • Serhat Gul

    (University of Massachusetts Amherst
    TED University)

Abstract

The flexibility level allowed in nursing care delivery and the uncertainty in infusion durations are important factors for chemotherapy scheduling. The nursing care delivery scheme employed in an outpatient chemotherapy clinic (OCC) determines the strictness of the patient-to-nurse assignment policies, while the estimation of infusion durations affects the trade-off between patient waiting time and nurse overtime. We study the problem of daily scheduling of patients, assignment of patients to nurses and chairs in the presence of uncertainty in infusion durations for an OCC that functions according to any of the commonly used nursing care delivery system representing fully, partially, and inflexible care systems. We develop a two-stage stochastic mixed-integer programming model minimizing expected weighted cost of patient waiting time and nurse overtime. We propose multiple variants of a scenario grouping-based decomposition algorithm to solve the model using data from a major university oncology hospital. We compare input-based, solution-based, and random scenario grouping methods within the decomposition algorithm. We obtain near-optimal schedules that are also significantly better than the schedules generated based on the policy used in the clinic. We analyze the impact of nursing care flexibility in order to determine whether a partial or fully flexible delivery system is necessary to adequately improve waiting time and overtime.

Suggested Citation

  • Serhat Gul, 2024. "Nursing care flexibility in chemotherapy appointment scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 918-945, September.
  • Handle: RePEc:spr:flsman:v:36:y:2024:i:3:d:10.1007_s10696-023-09526-6
    DOI: 10.1007/s10696-023-09526-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-023-09526-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-023-09526-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    2. Guillaume Lamé & Oualid Jouini & Julie Stal-Le Cardinal, 2016. "Outpatient Chemotherapy Planning: a Literature Review with Insights from a Case Study," Post-Print hal-01324488, HAL.
    3. Alireza F. Hesaraki & Nico P. Dellaert & Ton Kok, 2020. "Integrating nurse assignment in outpatient chemotherapy appointment scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 935-963, December.
    4. Michelle Alvarado & Lewis Ntaimo, 2018. "Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming," Health Care Management Science, Springer, vol. 21(1), pages 87-104, March.
    5. Ryan F. Slocum & Herbert L. Jones & Matthew T. Fletcher & Brandon M. McConnell & Thom J. Hodgson & Javad Taheri & James R. Wilson, 2021. "Improving chemotherapy infusion operations through the simulation of scheduling heuristics: a case study," Health Systems, Taylor & Francis Journals, vol. 10(3), pages 163-178, July.
    6. Mike Hewitt & Janosch Ortmann & Walter Rei, 2022. "Decision-based scenario clustering for decision-making under uncertainty," Annals of Operations Research, Springer, vol. 315(2), pages 747-771, August.
    7. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    8. Karakaya, Sırma & Gul, Serhat & Çelik, Melih, 2023. "Stochastic scheduling of chemotherapy appointments considering patient acuity levels," European Journal of Operational Research, Elsevier, vol. 305(2), pages 902-916.
    9. Avishai Mandelbaum & Petar Momčilović & Nikolaos Trichakis & Sarah Kadish & Ryan Leib & Craig A. Bunnell, 2020. "Data-Driven Appointment-Scheduling Under Uncertainty: The Case of an Infusion Unit in a Cancer Center," Management Science, INFORMS, vol. 66(1), pages 243-270, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, Sırma & Gul, Serhat & Çelik, Melih, 2023. "Stochastic scheduling of chemotherapy appointments considering patient acuity levels," European Journal of Operational Research, Elsevier, vol. 305(2), pages 902-916.
    2. Alireza F. Hesaraki & Nico P. Dellaert & Ton Kok, 2023. "Online scheduling using a fixed template: the case of outpatient chemotherapy drug administration," Health Care Management Science, Springer, vol. 26(1), pages 117-137, March.
    3. Hadid, Majed & Elomri, Adel & Mekkawy, Tarek El & Jouini, Oualid & Kerbache, Laoucine & Hamad, Anas, 2022. "Operations management of outpatient chemotherapy process: An optimization-oriented comprehensive review," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    5. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    6. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    7. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    8. Giuliana Carello & Paolo Landa & Elena Tànfani & Angela Testi, 2022. "Master chemotherapy planning and clinicians rostering in a hospital outpatient cancer centre," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 159-187, March.
    9. Alex Kuiper & Robert H. Lee, 2022. "Appointment Scheduling for Multiple Servers," Management Science, INFORMS, vol. 68(10), pages 7422-7440, October.
    10. Pilar I. Vidal-Carreras & Julio J. Garcia-Sabater & Juan A. Marin-Garcia, 2022. "Applying Value Stream Mapping to Improve the Delivery of Patient Care in the Oncology Day Hospital," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
    11. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    12. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    13. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    14. Menel Benzaid & Nadia Lahrichi & Louis-Martin Rousseau, 2020. "Chemotherapy appointment scheduling and daily outpatient–nurse assignment," Health Care Management Science, Springer, vol. 23(1), pages 34-50, March.
    15. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    16. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    17. Sudhanshu Joshi & Manu Sharma, 2022. "A Literature Survey on Vaccine Supply Chain Management Amidst COVID-19: Literature Developments, Future Directions and Open Challenges for Public Health," World, MDPI, vol. 3(4), pages 1-28, October.
    18. Wenjuan Fan & Yi Wang & Tongzhu Liu & Guixian Tong, 2020. "A patient flow scheduling problem in ophthalmology clinic solved by the hybrid EDA–VNS algorithm," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 547-580, February.
    19. Aditya Shetty & Harry Groenevelt & Vera Tilson, 2023. "Intraday dynamic rescheduling under patient no-shows," Health Care Management Science, Springer, vol. 26(3), pages 583-598, September.
    20. Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:36:y:2024:i:3:d:10.1007_s10696-023-09526-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.