IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v31y2019i4d10.1007_s10696-018-9329-7.html
   My bibliography  Save this article

Modelling and analysis of the impact of correlated inter-event data on production control using Markovian arrival processes

Author

Listed:
  • Nima Manafzadeh Dizbin

    (Koç University)

  • Barış Tan

    (Koç University)

Abstract

Empirical studies show that the inter-event times of a production system are correlated. However, most of the analytical studies for the analysis and control of production systems ignore correlation. In this study, we show that real-time data collected from a manufacturing system can be used to build a Markovian arrival processes (MAP) model that captures correlation in inter-event times. The obtained MAP model can then be used to control production in an effective way. We first present a comprehensive review on MAP modeling and MAP fitting methods applicable to manufacturing systems. Then we present results on the effectiveness of these fitting methods and discuss how the collected inter-event data can be used to represent the flow dynamics of a production system accurately. In order to study the impact of capturing the flow dynamics accurately on the performance of a production control system, we analyze a manufacturing system that is controlled by using a base-stock policy. We study the impact of correlation in inter-event times on the optimal base-stock level of the system numerically by employing the structural properties of the MAP. We show that ignoring correlated arrival or service process can lead to overestimation of the optimal base-stock level for negatively correlated processes, and underestimation for the positively correlated processes. We conclude that MAPs can be used to develop data-driven models and control manufacturing systems more effectively by using shop-floor inter-event data.

Suggested Citation

  • Nima Manafzadeh Dizbin & Barış Tan, 2019. "Modelling and analysis of the impact of correlated inter-event data on production control using Markovian arrival processes," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 1042-1076, December.
  • Handle: RePEc:spr:flsman:v:31:y:2019:i:4:d:10.1007_s10696-018-9329-7
    DOI: 10.1007/s10696-018-9329-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-018-9329-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-018-9329-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    2. Miron Livny & Benjamin Melamed & Athanassios K. Tsiolis, 1993. "The Impact of Autocorrelation on Queuing Systems," Management Science, INFORMS, vol. 39(3), pages 322-339, March.
    3. Z. Jemai & F. Karaesmen, 2005. "The influence of demand variability on the performance of a make-to-stock queue," Post-Print hal-00126137, HAL.
    4. Sidney Resnick & Gennady Samorodnitsky, 1997. "Performance Decay in a Single Server Exponential Queueing Model with Long Range Dependence," Operations Research, INFORMS, vol. 45(2), pages 235-243, April.
    5. Jemai, Zied & Karaesmen, Fikri, 2005. "The influence of demand variability on the performance of a make-to-stock queue," European Journal of Operational Research, Elsevier, vol. 164(1), pages 195-205, July.
    6. Barış Tan & Svenja Lagershausen, 2017. "On the output dynamics of production systems subject to blocking," IISE Transactions, Taylor & Francis Journals, vol. 49(3), pages 268-284, March.
    7. Kevin B. Hendricks & John O. McClain, 1993. "The Output Process of Serial Production Lines of General Machines with Finite Buffers," Management Science, INFORMS, vol. 39(10), pages 1194-1201, October.
    8. Peter Buchholz & Jan Kriege, 2017. "Fitting correlated arrival and service times and related queueing performance," Queueing Systems: Theory and Applications, Springer, vol. 85(3), pages 337-359, April.
    9. Nasser Hadidi, 1985. "Further Results on Queues with Partial Correlation," Operations Research, INFORMS, vol. 33(1), pages 203-209, February.
    10. Susan H. Xu, 1999. "Structural Analysis of a Queueing System with Multiclasses of Correlated Arrivals and Blocking," Operations Research, INFORMS, vol. 47(2), pages 264-276, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khayyati, Siamak & Tan, Barış, 2020. "Data-driven control of a production system by using marking-dependent threshold policy," International Journal of Production Economics, Elsevier, vol. 226(C).
    2. Tan, Barış & Karabağ, Oktay & Khayyati, Siamak, 2023. "Production and energy mode control of a production-inventory system," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1176-1187.
    3. Petra Tomanová & Vladimír Holý, 2021. "Clustering of arrivals in queueing systems: autoregressive conditional duration approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 859-874, September.
    4. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Civelek, Ismail & Biller, Bahar & Scheller-Wolf, Alan, 2021. "Impact of dependence on single-server queueing systems," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1031-1045.
    2. Petra Tomanová & Vladimír Holý, 2021. "Clustering of arrivals in queueing systems: autoregressive conditional duration approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 859-874, September.
    3. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Fleischhacker, Adam J. & Fok, Pak-Wing, 2015. "On the relationship between entropy, demand uncertainty, and expected loss," European Journal of Operational Research, Elsevier, vol. 245(2), pages 623-628.
    5. Ewing, Bradley T. & Thompson, Mark A., 2008. "Industrial production, volatility, and the supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 553-558, October.
    6. Noblesse, Ann M. & Boute, Robert N. & Lambrecht, Marc R. & Van Houdt, Benny, 2014. "Lot sizing and lead time decisions in production/inventory systems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 351-360.
    7. Apurva Jain, 2006. "Priority and dynamic scheduling in a make‐to‐stock queue with hyperexponential demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 363-382, August.
    8. David Heath & Sidney Resnick & Gennady Samorodnitsky, 1998. "Heavy Tails and Long Range Dependence in On/Off Processes and Associated Fluid Models," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 145-165, February.
    9. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    10. Sanajian, Nima & BalcIog[small tilde]lu, BarIs, 2009. "The impact of production time variability on make-to-stock queue performance," European Journal of Operational Research, Elsevier, vol. 194(3), pages 847-855, May.
    11. Huy Truong Quang & Yoshinori Hara, 2019. "Managing risks and system performance in supply network: a conceptual framework," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 32(2), pages 245-271.
    12. Stark, Oded & Budzinski, Wiktor & Kosiorowski, Grzegorz, 2019. "Switching queues, cultural conventions, and social welfare," European Journal of Operational Research, Elsevier, vol. 278(3), pages 837-844.
    13. Boute, Robert N. & Disney, Stephen M. & Lambrecht, Marc R. & Houdt, Benny Van, 2014. "Coordinating lead times and safety stocks under autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 232(1), pages 52-63.
    14. Jing-Sheng Song & Hanqin Zhang & Yumei Hou & Mingzheng Wang, 2010. "The Effect of Lead Time and Demand Uncertainties in ( r, q ) Inventory Systems," Operations Research, INFORMS, vol. 58(1), pages 68-80, February.
    15. Awi Federgruen & Min Wang, 2013. "Monotonicity properties of a class of stochastic inventory systems," Annals of Operations Research, Springer, vol. 208(1), pages 155-186, September.
    16. Li, Na & Zhang, Mike Tao & Deng, Shiming & Lee, Zu-Hsu & Zhang, Lawrence & Zheng, Li, 2007. "Single-station performance evaluation and improvement in semiconductor manufacturing: A graphical approach," International Journal of Production Economics, Elsevier, vol. 107(2), pages 397-403, June.
    17. Robert N. Boute & Marc R. Lambrecht & Benny Van Houdt, 2007. "Performance evaluation of a production/inventory system with periodic review and endogenous lead times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 462-473, June.
    18. Qi Feng & J. George Shanthikumar, 2022. "Applications of Stochastic Orders and Stochastic Functions in Inventory and Pricing Problems," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1433-1453, April.
    19. Cheung, Ki Ling & Song, Jing-Sheng & Zhang, Yue, 2017. "Cost reduction through operations reversal," European Journal of Operational Research, Elsevier, vol. 259(1), pages 100-112.
    20. Robert, Christian Y. & Segers, Johan, 2008. "Tails of random sums of a heavy-tailed number of light-tailed terms," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 85-92, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:31:y:2019:i:4:d:10.1007_s10696-018-9329-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.