IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v27y2023i4d10.1007_s00780-023-00512-2.html
   My bibliography  Save this article

Robust utility maximisation with intractable claims

Author

Listed:
  • Yunhong Li

    (The Hong Kong Polytechnic University)

  • Zuo Quan Xu

    (The Hong Kong Polytechnic University)

  • Xun Yu Zhou

    (Columbia University)

Abstract

We study a continuous-time expected utility maximisation problem where the investor at maturity receives the value of a contingent claim in addition to the investment payoff from the financial market. The investor knows nothing about the claim other than its probability distribution; hence the name “intractable claim”. In view of the lack of necessary information about the claim, we consider a robust formulation to maximise her utility in the worst scenario. We apply the quantile formulation to solve the problem, express the quantile function of the optimal terminal investment income as the solution of certain variational inequalities of ordinary differential equations, and obtain the resulting optimal trading strategy. In the case of exponential utility, the problem reduces to a (non-robust) rank-dependent utility maximisation with probability distortion whose solution is available in the literature. The results can also be used to determine the utility indifference price of the intractable claim.

Suggested Citation

  • Yunhong Li & Zuo Quan Xu & Xun Yu Zhou, 2023. "Robust utility maximisation with intractable claims," Finance and Stochastics, Springer, vol. 27(4), pages 985-1015, October.
  • Handle: RePEc:spr:finsto:v:27:y:2023:i:4:d:10.1007_s00780-023-00512-2
    DOI: 10.1007/s00780-023-00512-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00512-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00512-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo Quan Xu, 2016. "A Note On The Quantile Formulation," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 589-601, July.
    2. A. Oberman & T. Zariphopoulou, 2003. "Pricing early exercise contracts in incomplete markets," Computational Management Science, Springer, vol. 1(1), pages 75-107, December.
    3. Alexander Schied, 2004. "On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals," Papers math/0407127, arXiv.org.
    4. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    5. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2008. "A Convex Stochastic Optimization Problem Arising From Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 171-183, January.
    6. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    7. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    8. Zuo Quan Xu, 2013. "A New Characterization of Comonotonicity and its Application in Behavioral Finance," Papers 1311.6080, arXiv.org, revised Jun 2014.
    9. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    10. Marek Musiela & Thaleia Zariphopoulou, 2004. "A valuation algorithm for indifference prices in incomplete markets," Finance and Stochastics, Springer, vol. 8(3), pages 399-414, August.
    11. Julien Hugonnier & Dmitry Kramkov & Walter Schachermayer, 2005. "On Utility‐Based Pricing Of Contingent Claims In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 203-212, April.
    12. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    13. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    14. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    15. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunhong Li & Zuo Quan Xu & Xun Yu Zhou, 2023. "Robust utility maximization with intractable claims," Papers 2304.06938, arXiv.org, revised Jul 2023.
    2. Zuo Quan Xu, 2018. "Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework," Papers 1803.02546, arXiv.org, revised Aug 2021.
    3. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    4. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    5. Lixin Wu & Min Dai, 2009. "Pricing jump risk with utility indifference," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 177-186.
    6. Jing Peng & Pengyu Wei & Zuo Quan Xu, 2022. "Relative growth rate optimization under behavioral criterion," Papers 2211.05402, arXiv.org.
    7. Pengyu Wei & Zuo Quan Xu, 2021. "Dynamic growth-optimum portfolio choice under risk control," Papers 2112.14451, arXiv.org.
    8. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    9. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    10. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    11. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    12. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    13. Mi, Hui & Xu, Zuo Quan, 2023. "Optimal portfolio selection with VaR and portfolio insurance constraints under rank-dependent expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 82-105.
    14. Felix-Benedikt Liebrich & Cosimo Munari, 2022. "Law-Invariant Functionals that Collapse to the Mean: Beyond Convexity," Mathematics and Financial Economics, Springer, volume 16, number 2, December.
    15. Alet Roux & Zhikang Xu, 2019. "Optimal investment and contingent claim valuation with exponential disutility under proportional transaction costs," Papers 1909.06260, arXiv.org, revised May 2021.
    16. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    17. Guo, Ivan & Zhu, Song-Ping, 2017. "Equal risk pricing under convex trading constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 136-151.
    18. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    19. Jianming Xia, 2023. "Benchmark Beating with the Increasing Convex Order," Papers 2311.01692, arXiv.org.
    20. Xue Dong He & Zhaoli Jiang, 2020. "Optimal Payoff under the Generalized Dual Theory of Choice," Papers 2012.00345, arXiv.org.

    More about this item

    Keywords

    Intractable claim; Robust model; Quantile formulation; Calculus of variations; Variational inequalities; Rank-dependent utility;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:27:y:2023:i:4:d:10.1007_s00780-023-00512-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.