IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i4d10.1007_s00780-017-0341-7.html
   My bibliography  Save this article

Multilevel Monte Carlo for exponential Lévy models

Author

Listed:
  • Michael B. Giles

    (Oxford University)

  • Yuan Xia

    (Oxford University)

Abstract

We apply the multilevel Monte Carlo method for option pricing problems using exponential Lévy models with a uniform timestep discretisation. For lookback and barrier options, we derive estimates of the convergence rate of the error introduced by the discrete monitoring of the running supremum of a broad class of Lévy processes. We then use these to obtain upper bounds on the multilevel Monte Carlo variance convergence rate for the variance gamma, NIG and α $\alpha$ -stable processes. We also provide an analysis of a trapezoidal approximation for Asian options. Our method is illustrated by numerical experiments.

Suggested Citation

  • Michael B. Giles & Yuan Xia, 2017. "Multilevel Monte Carlo for exponential Lévy models," Finance and Stochastics, Springer, vol. 21(4), pages 995-1026, October.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:4:d:10.1007_s00780-017-0341-7
    DOI: 10.1007/s00780-017-0341-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-017-0341-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-017-0341-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreiro-Castilla, A. & Kyprianou, A.E. & Scheichl, R. & Suryanarayana, G., 2014. "Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 985-1010.
    2. Jos'e E. Figueroa-L'opez & Peter Tankov, 2012. "Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias," Papers 1203.2355, arXiv.org, revised Jul 2014.
    3. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    4. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    5. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    6. Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    2. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    3. Søren Asmussen & Jevgenijs Ivanovs, 2018. "Discretization error for a two-sided reflected Lévy process," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 199-212, June.
    4. Jie Chen & Liaoyuan Fan & Lingfei Li & Gongqiu Zhang, 2022. "A multidimensional Hilbert transform approach for barrier option pricing and survival probability calculation," Review of Derivatives Research, Springer, vol. 25(2), pages 189-232, July.
    5. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    6. Fomichov, Vladimir & González Cázares, Jorge & Ivanovs, Jevgenijs, 2021. "Implementable coupling of Lévy process and Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 407-431.
    7. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    8. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    9. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
    10. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Giles & Yuan Xia, 2014. "Multilevel Monte Carlo For Exponential L\'{e}vy Models," Papers 1403.5309, arXiv.org, revised May 2017.
    2. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    3. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    4. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    5. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    6. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    7. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    8. Aleksandar Mijatovic & Martijn Pistorius & Johannes Stolte, 2014. "Randomisation and recursion methods for mixed-exponential Levy models, with financial applications," Papers 1410.7316, arXiv.org.
    9. Yuan Xia, 2011. "Multilevel Monte Carlo method for jump-diffusion SDEs," Papers 1106.4730, arXiv.org.
    10. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    11. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    12. Fomichov, Vladimir & González Cázares, Jorge & Ivanovs, Jevgenijs, 2021. "Implementable coupling of Lévy process and Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 407-431.
    13. Ferreiro-Castilla, A. & Kyprianou, A.E. & Scheichl, R. & Suryanarayana, G., 2014. "Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 985-1010.
    14. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    15. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    16. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    17. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    18. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    19. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    20. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.

    More about this item

    Keywords

    Multilevel Monte Carlo; Exponential Lévy models; Asian options; Lookback options; Barrier options;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:4:d:10.1007_s00780-017-0341-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.