IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v6y2020i1d10.1186_s40854-020-00209-x.html
   My bibliography  Save this article

Discovering optimal weights in weighted-scoring stock-picking models: a mixture design approach

Author

Listed:
  • I-Cheng Yeh

    (Tamkang University)

  • Yi-Cheng Liu

    (Tamkang University)

Abstract

Certain literature that constructs a multifactor stock selection model adopted a weighted-scoring approach despite its three shortcomings. First, it cannot effectively identify the connection between the weights of stock-picking concepts and portfolio performances. Second, it cannot provide stock-picking concepts’ optimal combination of weights. Third, it cannot meet various investor preferences. Thus, this study employs a mixture experimental design to determine the weights of stock-picking concepts, collect portfolio performance data, and construct performance prediction models based on the weights of stock-picking concepts. Furthermore, these performance prediction models and optimization techniques are employed to discover stock-picking concepts’ optimal combination of weights that meet investor preferences. The samples consist of stocks listed on the Taiwan stock market. The modeling and testing periods were 1997–2008 and 2009–2015, respectively. Empirical evidence showed (1) that our methodology is robust in predicting performance accurately, (2) that it can identify significant interactions between stock-picking concepts’ weights, and (3) that which their optimal combination should be. This combination of weights can form stock portfolios with the best performances that can meet investor preferences. Thus, our methodology can fill the three drawbacks of the classical weighted-scoring approach.

Suggested Citation

  • I-Cheng Yeh & Yi-Cheng Liu, 2020. "Discovering optimal weights in weighted-scoring stock-picking models: a mixture design approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-28, December.
  • Handle: RePEc:spr:fininn:v:6:y:2020:i:1:d:10.1186_s40854-020-00209-x
    DOI: 10.1186/s40854-020-00209-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-020-00209-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-020-00209-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    3. van der Hart, Jaap & de Zwart, Gerben & van Dijk, Dick, 2005. "The success of stock selection strategies in emerging markets: Is it risk or behavioral bias?," Emerging Markets Review, Elsevier, vol. 6(3), pages 238-262, September.
    4. Kent Daniel & Lira Mota & Simon Rottke & Tano Santos, 2020. "The Cross-Section of Risk and Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1927-1979.
    5. I. Roko & M. Gilli, 2008. "Using economic and financial information for stock selection," Computational Management Science, Springer, vol. 5(4), pages 317-335, October.
    6. Durán-Vázquez, Rocío & Lorenzo-Valdés, Arturo & Castillo-Ramírez, Claudia, 2014. "Effectiveness of corporate finance valuation methods: Piotroski score in an Ohlson model: the case of Mexico," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 19(37), pages 104-107.
    7. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    8. Fama, Eugene F. & French, Kenneth R., 2012. "Size, value, and momentum in international stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 457-472.
    9. Sohyung Kim & Cheol Lee, 2014. "Implementability of Trading Strategies Based on Accounting Information: Piotroski (2000) Revisited," European Accounting Review, Taylor & Francis Journals, vol. 23(4), pages 553-558, December.
    10. Derick Kong & Cheng-Ping Lin & I-Cheng Yeh & Wei Chang, 2019. "Building growth and value hybrid valuation model with errors-in-variables regression," Applied Economics Letters, Taylor & Francis Journals, vol. 26(5), pages 370-386, March.
    11. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    12. I-Cheng Yeh & Tzu-Kuang Hsu, 2011. "Growth Value Two-Factor Model," Journal of Asset Management, Palgrave Macmillan, vol. 11(6), pages 435-451, February.
    13. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    14. Piotroski, JD, 2000. "Value investing: The use of historical financial statement information to separate winners from losers," Journal of Accounting Research, Wiley Blackwell, vol. 38, pages 1-41.
    15. Jarno Tikkanen & Janne Äijö, 2018. "Does the F-score improve the performance of different value investment strategies in Europe?," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 495-506, December.
    16. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    17. Richardson, Scott & Tuna, Irem & Wysocki, Peter, 2010. "Accounting anomalies and fundamental analysis: A review of recent research advances," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 410-454, December.
    18. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    19. Kent Daniel & Lira Mota & Simon Rottke & Tano Santos & Andrew KarolyiEditor, 2020. "The Cross-Section of Risk and Returns," Review of Finance, European Finance Association, vol. 33(5), pages 1927-1979.
    20. Noma, Mikiharu & 野間, 幹晴, 2010. "Value Investing and Financial Statement Analysis," Hitotsubashi Journal of commerce and management, Hitotsubashi University, vol. 44(1), pages 29-46, October.
    21. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    22. van der Hart, Jaap & Slagter, Erica & van Dijk, Dick, 2003. "Stock selection strategies in emerging markets," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 105-132, February.
    23. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I-Cheng Yeh, 2023. "Synergy frontier of multi-factor stock selection model," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 445-480, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, January.
    2. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    3. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    4. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    5. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    6. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2019. "Common Risk Factors in Cryptocurrency," NBER Working Papers 25882, National Bureau of Economic Research, Inc.
    7. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    8. Conover, C. Mitchell & Jensen, Gerald R. & Johnson, Robert R. & Szakmary, Andrew C., 2017. "Emerging markets: Is the trend still your friend?," Global Finance Journal, Elsevier, vol. 32(C), pages 128-148.
    9. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    10. Israel, Ronen & Moskowitz, Tobias J., 2013. "The role of shorting, firm size, and time on market anomalies," Journal of Financial Economics, Elsevier, vol. 108(2), pages 275-301.
    11. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    12. de Groot, Wilma & Pang, Juan & Swinkels, Laurens, 2012. "The cross-section of stock returns in frontier emerging markets," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 796-818.
    13. Ng, Chi Cheong Allen & Shen, Jianfu, 2016. "Screen winners from losers using simple fundamental analysis in the Pacific-Basin stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 159-177.
    14. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
    15. Blanco, Ivan & De Jesus, Miguel & Remesal, Alvaro, 2023. "Overlapping momentum portfolios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 1-22.
    16. repec:fau:fauart:v:65:y:2015:i:1:p:84-104 is not listed on IDEAS
    17. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    18. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    19. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    20. Shah Saeed Hassan Chowdhury & Rashida Sharmin & M Arifur Rahman, 2019. "Presence and Sources of Contrarian Profits in the Bangladesh Stock Market," Global Business Review, International Management Institute, vol. 20(1), pages 84-104, February.
    21. Cakici, Nusret & Zaremba, Adam & Bianchi, Robert J. & Pham, Nga, 2021. "False discoveries in the anomaly research: New insights from the Stock Exchange of Melbourne (1927–1987)," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:6:y:2020:i:1:d:10.1186_s40854-020-00209-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.