IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i6d10.1140_epjb_s10051-024-00727-y.html
   My bibliography  Save this article

Effects of ballistic transport on the thermal resistance and temperature profile in nanowires

Author

Listed:
  • R. Meyer

    (Laurentian University)

  • Graham W. Gibson
  • Alexander N. Robillard

    (Laurentian University)

Abstract

Effects of ballistic transport on the temperature profiles and thermal resistance in nanowires are studied. Computer simulations of nanowires between a heat source and a heat sink have shown that in the middle of such wires the temperature gradient is reduced compared to Fourier’s law with steep gradients close to the heat source and sink. In this work, results from molecular dynamics and phonon Monte Carlo simulations of the heat transport in nanowires are compared to a radiator model which predicts a reduced gradient with discrete jumps at the wire ends. The comparison shows that for wires longer than the typical mean free path of phonons the radiator model is able to account for ballistic transport effects. The steep gradients at the wire ends are then continuous manifestations of the discrete jumps in the model. Graphical abstract

Suggested Citation

  • R. Meyer & Graham W. Gibson & Alexander N. Robillard, 2024. "Effects of ballistic transport on the thermal resistance and temperature profile in nanowires," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-13, June.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00727-y
    DOI: 10.1140/epjb/s10051-024-00727-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00727-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00727-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Maldovan, 2013. "Sound and heat revolutions in phononics," Nature, Nature, vol. 503(7475), pages 209-217, November.
    2. Keith T. Regner & Daniel P. Sellan & Zonghui Su & Cristina H. Amon & Alan J.H. McGaughey & Jonathan A. Malen, 2013. "Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Hadi & Haoming Luo & Stéphane Pailhès & Anne Tanguy & Anthony Gravouil & Flavio Capotondi & Dario Angelis & Danny Fainozzi & Laura Foglia & Riccardo Mincigrucci & Ettore Paltanin & Emanuele P, 2024. "The effect of echoes interference on phonon attenuation in a nanophononic membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Paola Gori & Claudia Guattari & Francesco Asdrubali & Roberto De Lieto Vollaro & Alessio Monti & Davide Ramaccia & Filiberto Bilotti & Alessandro Toscano, 2016. "Sustainable Acoustic Metasurfaces for Sound Control," Sustainability, MDPI, vol. 8(2), pages 1-10, January.
    3. Yu Pei & Li Chen & Wonjae Jeon & Zhaowei Liu & Renkun Chen, 2023. "Low-dimensional heat conduction in surface phonon polariton waveguide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Zhang, Ge & Cottrill, Anton L. & Koman, Volodymyr B. & Liu, Albert Tianxiang & Mahajan, Sayalee G. & Piephoff, D. Evan & Strano, Michael S., 2020. "Persistent, single-polarity energy harvesting from ambient thermal fluctuations using a thermal resonance device with thermal diodes," Applied Energy, Elsevier, vol. 280(C).
    6. Youcheng Jiang & Shangzhi Song & Mengjuan Mi & Lixuan Yu & Lisha Xu & Puqing Jiang & Yilin Wang, 2023. "Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material," Energies, MDPI, vol. 16(3), pages 1-11, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00727-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.