IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i6d10.1140_epjb_s10051-024-00714-3.html
   My bibliography  Save this article

Non-Hermitian tearing by dissipation

Author

Listed:
  • Qian Du

    (Linyi University)

  • Xin-Ran Ma

    (Beijing Normal University)

  • Su-Peng Kou

    (Beijing Normal University)

Abstract

In the paper, we study the non-Hermitian system under dissipation and give the effective $$2\times 2$$ 2 × 2 Hamiltonian in the k-space by reducing the $$N\times N$$ N × N Hamiltonian in the real space for them. It is discovered that the energy band shows an imaginary line gap. To describe these phenomena, we propose the theory of “non-Hermitian tearing” , in which the tearability we define reveals a continuous phase transition at the exceptional point. The non-Hermitian tearing manifests in two forms — separation of bulk state and decoupling of boundary state. In addition, we also explore the one-dimensional Su–Schrieffer–Heeger model and the Qi–Wu–Zhang model under dissipation using the theory of non-Hermitian tearing. Our results provide a theoretical approach for exploring the controlling of non-Hermitian physics on topological quantum states. Graphical abstract

Suggested Citation

  • Qian Du & Xin-Ran Ma & Su-Peng Kou, 2024. "Non-Hermitian tearing by dissipation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00714-3
    DOI: 10.1140/epjb/s10051-024-00714-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00714-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00714-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linhu Li & Ching Hua Lee & Sen Mu & Jiangbin Gong, 2020. "Critical non-Hermitian skin effect," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Quan Lin & Tianyu Li & Lei Xiao & Kunkun Wang & Wei Yi & Peng Xue, 2022. "Observation of non-Hermitian topological Anderson insulator in quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Zhen Li & Li-Wei Wang & Xulong Wang & Zhi-Kang Lin & Guancong Ma & Jian-Hua Jiang, 2024. "Observation of dynamic non-Hermitian skin effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Cui-Xian Guo & Luhong Su & Yongliang Wang & Li Li & Jinzhe Wang & Xinhui Ruan & Yanjing Du & Dongning Zheng & Shu Chen & Haiping Hu, 2024. "Scale-tailored localization and its observation in non-Hermitian electrical circuits," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Raj, Anita & Dey, Arnab & Rao, Namratha & Yore, Jennifer & McDougal, Lotus & Bhan, Nandita & Silverman, Jay G. & Hay, Katherine & Thomas, Edwin E. & Fotso, Jean Christophe & Lundgren, Rebecka, 2024. "The EMERGE framework to measure empowerment for health and development," Social Science & Medicine, Elsevier, vol. 351(S1).
    8. Peng Xue & Quan Lin & Kunkun Wang & Lei Xiao & Stefano Longhi & Wei Yi, 2024. "Self acceleration from spectral geometry in dissipative quantum-walk dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00714-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.