IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18917-4.html
   My bibliography  Save this article

Critical non-Hermitian skin effect

Author

Listed:
  • Linhu Li

    (National University of Singapore)

  • Ching Hua Lee

    (National University of Singapore)

  • Sen Mu

    (National University of Singapore)

  • Jiangbin Gong

    (National University of Singapore)

Abstract

Critical systems represent physical boundaries between different phases of matter and have been intensely studied for their universality and rich physics. Yet, with the rise of non-Hermitian studies, fundamental concepts underpinning critical systems - like band gaps and locality - are increasingly called into question. This work uncovers a new class of criticality where eigenenergies and eigenstates of non-Hermitian lattice systems jump discontinuously across a critical point in the thermodynamic limit, unlike established critical scenarios with spectrum remaining continuous across a transition. Such critical behavior, dubbed the “critical non-Hermitian skin effect”, arises whenever subsystems with dissimilar non-reciprocal accumulations are coupled, however weakly. This indicates, as elaborated with the generalized Brillouin zone approach, that the thermodynamic and zero-coupling limits are not exchangeable, and that even a large system can be qualitatively different from its thermodynamic limit. Examples with anomalous scaling behavior are presented as manifestations of the critical non-Hermitian skin effect in finite-size systems. More spectacularly, topological in-gap modes can even be induced by changing the system size. We provide an explicit proposal for detecting the critical non-Hermitian skin effect in an RLC circuit setup, which also directly carries over to established setups in non-Hermitian optics and mechanics.

Suggested Citation

  • Linhu Li & Ching Hua Lee & Sen Mu & Jiangbin Gong, 2020. "Critical non-Hermitian skin effect," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18917-4
    DOI: 10.1038/s41467-020-18917-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18917-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18917-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Qian Du & Xin-Ran Ma & Su-Peng Kou, 2024. "Non-Hermitian tearing by dissipation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    3. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Cui-Xian Guo & Luhong Su & Yongliang Wang & Li Li & Jinzhe Wang & Xinhui Ruan & Yanjing Du & Dongning Zheng & Shu Chen & Haiping Hu, 2024. "Scale-tailored localization and its observation in non-Hermitian electrical circuits," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Zhen Li & Li-Wei Wang & Xulong Wang & Zhi-Kang Lin & Guancong Ma & Jian-Hua Jiang, 2024. "Observation of dynamic non-Hermitian skin effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Raj, Anita & Dey, Arnab & Rao, Namratha & Yore, Jennifer & McDougal, Lotus & Bhan, Nandita & Silverman, Jay G. & Hay, Katherine & Thomas, Edwin E. & Fotso, Jean Christophe & Lundgren, Rebecka, 2024. "The EMERGE framework to measure empowerment for health and development," Social Science & Medicine, Elsevier, vol. 351(S1).
    7. Quan Lin & Tianyu Li & Lei Xiao & Kunkun Wang & Wei Yi & Peng Xue, 2022. "Observation of non-Hermitian topological Anderson insulator in quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Peng Xue & Quan Lin & Kunkun Wang & Lei Xiao & Stefano Longhi & Wei Yi, 2024. "Self acceleration from spectral geometry in dissipative quantum-walk dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18917-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.