IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v94y2021i8d10.1140_epjb_s10051-021-00181-0.html
   My bibliography  Save this article

Statistics of the number of equilibria in random social dilemma evolutionary games with mutation

Author

Listed:
  • Manh Hong Duong

    (University of Birmingham)

  • The Anh Han

    (Teesside University)

Abstract

In this paper, we study analytically the statistics of the number of equilibria in pairwise social dilemma evolutionary games with mutation where a game’s payoff entries are random variables. Using the replicator–mutator equations, we provide explicit formulas for the probability distributions of the number of equilibria as well as other statistical quantities. This analysis is highly relevant assuming that one might know the nature of a social dilemma game at hand (e.g., cooperation vs coordination vs anti-coordination), but measuring the exact values of its payoff entries is difficult. Our delicate analysis shows clearly the influence of the mutation probability on these probability distributions, providing insights into how varying this important factor impacts the overall behavioural or biological diversity of the underlying evolutionary systems. Graphic abstract

Suggested Citation

  • Manh Hong Duong & The Anh Han, 2021. "Statistics of the number of equilibria in random social dilemma evolutionary games with mutation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-13, August.
  • Handle: RePEc:spr:eurphb:v:94:y:2021:i:8:d:10.1140_epjb_s10051-021-00181-0
    DOI: 10.1140/epjb/s10051-021-00181-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00181-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00181-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, The Anh & Traulsen, Arne & Gokhale, Chaitanya S., 2012. "On equilibrium properties of evolutionary multi-player games with random payoff matrices," Theoretical Population Biology, Elsevier, vol. 81(4), pages 264-272.
    2. Manh Hong Duong & The Anh Han, 2020. "On Equilibrium Properties of the Replicator–Mutator Equation in Deterministic and Random Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 641-663, September.
    3. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qinchunxue & Shu, Lan & Jiang, Bichuan, 2023. "Moran process in evolutionary game dynamics with interval payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    2. Chen, Luoer & Deng, Churou & Duong, Manh Hong & Han, The Anh, 2024. "On the number of equilibria of the replicator-mutator dynamics for noisy social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manh Hong Duong & The Anh Han, 2020. "On Equilibrium Properties of the Replicator–Mutator Equation in Deterministic and Random Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 641-663, September.
    2. Chen, Luoer & Deng, Churou & Duong, Manh Hong & Han, The Anh, 2024. "On the number of equilibria of the replicator-mutator dynamics for noisy social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    4. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    5. Manh Hong Duong & Hoang Minh Tran & The Anh Han, 2019. "On the Expected Number of Internal Equilibria in Random Evolutionary Games with Correlated Payoff Matrix," Dynamic Games and Applications, Springer, vol. 9(2), pages 458-485, June.
    6. Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
    7. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    8. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Minhyeok Lee, 2023. "Game-Theoretical Analysis of Reviewer Rewards in Peer-Review Journal Systems: Analysis and Experimental Evaluation using Deep Reinforcement Learning," Papers 2305.12088, arXiv.org.
    10. Mansoor Saburov, 2022. "On Discrete-Time Replicator Equations with Nonlinear Payoff Functions," Dynamic Games and Applications, Springer, vol. 12(2), pages 643-661, June.
    11. Pi, Jinxiu & Yang, Guanghui & Tang, Wei & Yang, Hui, 2022. "Stochastically stable equilibria for evolutionary snowdrift games with time costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Bin Wu & Arne Traulsen & Chaitanya S. Gokhale, 2013. "Dynamic Properties of Evolutionary Multi-player Games in Finite Populations," Games, MDPI, vol. 4(2), pages 1-18, May.
    13. Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
    14. Chaitanya Gokhale & Arne Traulsen, 2014. "Evolutionary Multiplayer Games," Dynamic Games and Applications, Springer, vol. 4(4), pages 468-488, December.
    15. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    16. Saptarshi Pal & Christian Hilbe, 2022. "Reputation effects drive the joint evolution of cooperation and social rewarding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Zhang, Qinchunxue & Shu, Lan & Jiang, Bichuan, 2023. "Moran process in evolutionary game dynamics with interval payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    18. Czuppon, Peter & Gokhale, Chaitanya S., 2018. "Disentangling eco-evolutionary effects on trait fixation," Theoretical Population Biology, Elsevier, vol. 124(C), pages 93-107.
    19. Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Gu, Cuiling & Wang, Xianjia & Ding, Rui & Zhao, Jinhua & Liu, Yang, 2022. "Evolutionary dynamics of multi-player snowdrift games based on the Wright-Fisher process," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:94:y:2021:i:8:d:10.1140_epjb_s10051-021-00181-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.