IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v88y2015i10p1-1010.1140-epjb-e2015-60515-5.html
   My bibliography  Save this article

Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components

Author

Listed:
  • Călin Vamoş
  • Maria Crăciun
  • Nicolae Suciu

Abstract

Fractional Brownian motion (fBm) is a nonstationary self-similar continuous stochastic process used to model many natural phenomena. A realization of the fBm can be numerically approximated by discrete paths which do not entirely preserve the self-similarity. We investigate the self-similarity at different time scales by decomposing the discrete paths of fBm into intrinsic components. The decomposition is realized by an automatic numerical algorithm based on successive smoothings stopped when the maximum monotonic variation of the averaged time series is reached. The spectral properties of the intrinsic components are analyzed through the monotony spectrum defined as the graph of the amplitudes of the monotonic segments with respect to their lengths (characteristic times). We show that, at intermediate time scales, the mean amplitude of the intrinsic components of discrete fBms scales with the mean characteristic time as a power law identical to that of the corresponding continuous fBm. As an application we consider hydrological time series of the transverse component of the transport process generated as a superposition of diffusive movements on advective transport in random velocity fields. We found that the transverse component has a rich structure of scales, which is not revealed by the analysis of the global variance, and that its intrinsic components may be self-similar only in particular cases. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Călin Vamoş & Maria Crăciun & Nicolae Suciu, 2015. "Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(10), pages 1-10, October.
  • Handle: RePEc:spr:eurphb:v:88:y:2015:i:10:p:1-10:10.1140/epjb/e2015-60515-5
    DOI: 10.1140/epjb/e2015-60515-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2015-60515-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2015-60515-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    2. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    5. Kwapień, J. & Drożdż, S. & Oświe¸cimka, P., 2006. "The bulk of the stock market correlation matrix is not pure noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 589-606.
    6. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    7. Mulligan, Robert F. & Lombardo, Gary A., 2004. "Maritime businesses: volatile stock prices and market valuation inefficiencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 321-336, May.
    8. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    9. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
    10. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    11. Veysov, Alexander, 2012. "Financial System Classification: From Conventional Dichotomy to a More Modern View," MPRA Paper 40613, University Library of Munich, Germany.
    12. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    13. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    14. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2013. "Multifractality and long memory of a financial index," Papers 1306.0490, arXiv.org.
    15. repec:ebl:ecbull:v:3:y:2003:i:31:p:1-12 is not listed on IDEAS
    16. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.
    17. Mandelbrot, Benoit B., 1999. "Renormalization and fixed points in finance, since 1962," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 477-487.
    18. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    19. Chuxuan Jiang & Priya Dev & Ross A. Maller, 2020. "A Hypothesis Test Method for Detecting Multifractal Scaling, Applied to Bitcoin Prices," JRFM, MDPI, vol. 13(5), pages 1-21, May.
    20. Nicolas Boitout & Loredana Ureche-Rangau, 2004. "Towards A Multifractal Paradigm Of Stochastic Volatility?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(07), pages 823-851.
    21. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.

    More about this item

    Keywords

    Computational Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:88:y:2015:i:10:p:1-10:10.1140/epjb/e2015-60515-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.