IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i2p507-520.html
   My bibliography  Save this article

The capacitated mobile facility location problem

Author

Listed:
  • Raghavan, S.
  • Sahin, Mustafa
  • Salman, F. Sibel

Abstract

The capacitated mobile facility location problem (CMFLP) arises in logistics planning of community outreach programs delivered via mobile facilities. It adds capacity restrictions to the mobile facility location problem introduced previously by Demaine et al. (2009), thereby extending the problem to a practical setting. In the problem, one seeks to relocate (or move) a set of existing facilities and assign clients to these facilities while respecting capacities so that the weighted sum of facility movement costs and the client travel costs (each to its assigned facility) is minimized. We provide two integer programming formulations for the CMFLP. The first is on a layered graph, while the second is a set partitioning formulation. We prove that the linear relaxation of the set partitioning formulation provides a tighter lower bound to the CMFLP than the linear relaxation of the layered graph formulation. We then develop a branch-and-price algorithm on the set partitioning formulation. We find that the branch-and-price procedure is particularly effective both in terms of solution quality and running time, when the ratio of the number of clients to the number of facilities is small and the facility capacities are tight. Finally, we present two heuristic approaches for the CMFLP. One is a linear programming rounding heuristic, and the other is based on a natural decomposition of the problem on the layered graph.

Suggested Citation

  • Raghavan, S. & Sahin, Mustafa & Salman, F. Sibel, 2019. "The capacitated mobile facility location problem," European Journal of Operational Research, Elsevier, vol. 277(2), pages 507-520.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:2:p:507-520
    DOI: 10.1016/j.ejor.2019.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171930219X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holmberg, Kaj & Ronnqvist, Mikael & Yuan, Di, 1999. "An exact algorithm for the capacitated facility location problems with single sourcing," European Journal of Operational Research, Elsevier, vol. 113(3), pages 544-559, March.
    2. Addis, Bernardetta & Carello, Giuliana & Ceselli, Alberto, 2013. "Combining very large scale and ILP based neighborhoods for a two-level location problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 535-546.
    3. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    4. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    5. Cattrysse, Dirk G. & Van Wassenhove, Luk N., 1992. "A survey of algorithms for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 260-272, August.
    6. Nima Anari & MohammadAmin Fazli & Mohammad Ghodsi & MohammadAli Safari, 2016. "Euclidean movement minimization," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 354-367, August.
    7. A Klose, 1999. "An LP-based heuristic for two-stage capacitated facility location problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(2), pages 157-166, February.
    8. Doerner, Karl & Focke, Axel & Gutjahr, Walter J., 2007. "Multicriteria tour planning for mobile healthcare facilities in a developing country," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1078-1096, June.
    9. Vedat Verter & Sophie Lapierre, 2002. "Location of Preventive Health Care Facilities," Annals of Operations Research, Springer, vol. 110(1), pages 123-132, February.
    10. Yang, Zhen & Chu, Feng & Chen, Haoxun, 2012. "A cut-and-solve based algorithm for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 521-532.
    11. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    12. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    13. Cortinhal, Maria Joao & Captivo, Maria Eugenia, 2003. "Upper and lower bounds for the single source capacitated location problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 333-351, December.
    14. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    15. Stefan Nickel & Francisco Saldanha Gama, 2015. "Multi-Period Facility Location," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 289-310, Springer.
    16. Chen, Chia-Ho & Ting, Ching-Jung, 2008. "Combining Lagrangian heuristic and Ant Colony System to solve the Single Source Capacitated Facility Location Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1099-1122, November.
    17. Hà, Minh Hoàng & Bostel, Nathalie & Langevin, André & Rousseau, Louis-Martin, 2013. "An exact algorithm and a metaheuristic for the multi-vehicle covering tour problem with a constraint on the number of vertices," European Journal of Operational Research, Elsevier, vol. 226(2), pages 211-220.
    18. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 2000. "An exact method for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 123(3), pages 473-489, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huizing, Dylan & Schäfer, Guido & van der Mei, Rob D. & Bhulai, Sandjai, 2020. "The median routing problem for simultaneous planning of emergency response and non-emergency jobs," European Journal of Operational Research, Elsevier, vol. 285(2), pages 712-727.
    2. Chenmei Teng & Poshan Yu & Liwen Liu, 2024. "A cooperative optimization model and enhanced algorithm for guided strategies in emergency mobile facilities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    3. Salman, F. Sibel & Yücel, Eda & Kayı, İlker & Turper-Alışık, Sedef & Coşkun, Abdullah, 2021. "Modeling mobile health service delivery to Syrian migrant farm workers using call record data," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    4. Han, Jialin & Zhang, Jiaxiang & Zeng, Bing & Mao, Mingsong, 2021. "Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition," Omega, Elsevier, vol. 105(C).
    5. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    7. Bayraktar, O. Baturhan & Günneç, Dilek & Salman, F. Sibel & Yücel, Eda, 2022. "Relief Aid Provision to En Route Refugees: Multi-Period Mobile Facility Location with Mobile Demand," European Journal of Operational Research, Elsevier, vol. 301(2), pages 708-725.
    8. Barbato, Michele & Ceselli, Alberto & Premoli, Marco, 2023. "On the impact of resource relocation in facing health emergencies," European Journal of Operational Research, Elsevier, vol. 308(1), pages 422-435.
    9. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    2. Lin, C.K.Y., 2009. "Stochastic single-source capacitated facility location model with service level requirements," International Journal of Production Economics, Elsevier, vol. 117(2), pages 439-451, February.
    3. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    4. Mohammad Nezhad, Ali & Manzour, Hasan & Salhi, Said, 2013. "Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 713-723.
    5. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    6. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    7. Yang, Zhen & Chu, Feng & Chen, Haoxun, 2012. "A cut-and-solve based algorithm for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 521-532.
    8. Di Francesco, Massimo & Gaudioso, Manlio & Gorgone, Enrico & Murthy, Ishwar, 2021. "A new extended formulation with valid inequalities for the Capacitated Concentrator Location Problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 975-986.
    9. Addis, Bernardetta & Carello, Giuliana & Ceselli, Alberto, 2013. "Combining very large scale and ILP based neighborhoods for a two-level location problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 535-546.
    10. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Iván Contreras & Juan Díaz, 2008. "Scatter search for the single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 157(1), pages 73-89, January.
    12. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    13. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    14. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    15. Amber Kunkel & Elizabeth Itallie & Duo Wu, 2014. "Optimal distribution of medical backpacks and health surveillance assistants in Malawi," Health Care Management Science, Springer, vol. 17(3), pages 230-244, September.
    16. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    17. Kınay, Ömer Burak & Saldanha-da-Gama, Francisco & Kara, Bahar Y., 2019. "On multi-criteria chance-constrained capacitated single-source discrete facility location problems," Omega, Elsevier, vol. 83(C), pages 107-122.
    18. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    19. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    20. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:2:p:507-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.