IDEAS home Printed from https://ideas.repec.org/a/spr/etbull/v6y2018i1d10.1007_s40505-017-0121-8.html
   My bibliography  Save this article

Weak maximal elements and weak equilibria in ordinal games with applications to exchange economies

Author

Listed:
  • Vincenzo Scalzo

    (University of Naples Federico II)

Abstract

We study binary relations (preferences) and ordinal games in the case where no continuity-like properties are assumed at all. We introduce generalizations of the maximal element and Nash equilibrium, called, respectively, the weak maximal element and weak equilibrium, and give existence results when binary relations satisfy only convexity conditions. The weak maximal element (weak equilibrium) is equivalent to the maximal element (Nash equilibrium) if and only if a generalization of continuity is given. Moreover, we obtain the existence of quasi-Pareto optimal allocations in exchange economies.

Suggested Citation

  • Vincenzo Scalzo, 2018. "Weak maximal elements and weak equilibria in ordinal games with applications to exchange economies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(1), pages 29-39, April.
  • Handle: RePEc:spr:etbull:v:6:y:2018:i:1:d:10.1007_s40505-017-0121-8
    DOI: 10.1007/s40505-017-0121-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40505-017-0121-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40505-017-0121-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    3. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    4. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    5. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    6. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    7. Vincenzo Scalzo, 2016. "Remarks on the existence and stability of some relaxed Nash equilibrium in strategic form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 571-586, March.
    8. Michael R. Baye & Guoqiang Tian & Jianxin Zhou, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 935-948.
    9. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scalzo, Vincenzo, 2020. "Doubly Strong Equilibrium," MPRA Paper 99329, University Library of Munich, Germany.
    2. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    3. Khan, M. Ali & McLean, Richard P. & Uyanik, Metin, 2024. "On constrained generalized games with action sets in non-locally-convex and non-Hausdorff topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    4. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    5. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    6. Prokopovych, Pavlo & Yannelis, Nicholas C., 2017. "On strategic complementarities in discontinuous games with totally ordered strategies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 147-153.
    7. Wei He & Nicholas C. Yannelis, 2017. "A remark on discontinuous games with asymmetric information and ambiguity," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 119-126, April.
    8. Yang, Zhe & Yuan, George Xianzhi, 2019. "Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 94-100.
    9. Oriol Carbonell-Nicolau & Richard P. McLean, 2019. "Nash and Bayes–Nash equilibria in strategic-form games with intransitivities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 935-965, November.
    10. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    11. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    12. Philippe Bich & Rida Laraki, 2017. "Externalities in economies with endogenous sharing rules," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 127-137, October.
    13. Anderson, Robert M. & Duanmu, Haosui & Khan, M. Ali & Uyanik, Metin, 2022. "On abstract economies with an arbitrary set of players and action sets in locally-convex topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    14. Wei He & Nicholas C. Yannelis, 2016. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 497-513, March.
    15. Pavlo Prokopovych & Nicholas C. Yannelis, 2012. "On Uniform Conditions for the Existence of Mixed Strategy Equilibria," Discussion Papers 48, Kyiv School of Economics.
    16. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    17. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    18. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    19. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    20. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.

    More about this item

    Keywords

    Binary relations; Preference relations; Weak maximal element; Ordinal games; Weak equilibrium; Exchange economies; Quasi-Pareto optimality;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:etbull:v:6:y:2018:i:1:d:10.1007_s40505-017-0121-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.