IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v37y2017i3d10.1007_s10669-017-9636-7.html
   My bibliography  Save this article

The development of a method to determine the burden of climate change on different health outcomes at a local scale: a case study in Osaka Prefecture, Japan

Author

Listed:
  • Robert G. D. Macnee

    (Osaka University)

  • Akihiro Tokai

    (Osaka University)

Abstract

Climate change impacts human health in a variety of ways. Variables including the climate-related risk factor, the health outcome and location all determine the nature and extent of the impact. The existence of different pathways and endpoints presents a problem for quantifying and comparing impacts. Disability-adjusted life year (DALY) provides a common scale, whereby the impact of climate change on both acute and chronic health outcomes can be compared. This study presents a methodology to calculate the impact of climate change on human health at a local scale, using cardiovascular disease (CVD) and meteorological disaster-related injuries (DRIs) in Osaka Prefecture, Japan, as applied case studies. An additional very fine scale assessment of CVD conducted at the neighbourhood level to demonstrate the importance of conducting risk assessments at a local level. The comparative results calculated the impact of climate change in 2050 to be 16.866 DALY/100,000 population for CVD and 0.645 DALY/100,000 for meteorological DRIs. The actual impact of climate change by 2050 on CVD is judged to be higher, although the relative risk was projected to be lower (1.006, compared to 1.263 for meteorological DRIs). The fine scale assessment revealed the variations in the projected impact of climate change on CVD for all administrative zones in Osaka Prefecture. The range of impacts varied from 0 to 114.29 DALY/100,000. The results demonstrate the applicability of using DALY to quantify the impact of climate change on different health outcomes, using a transferable methodology, and provide information that enables evidence-based prioritisation of climate change adaptation strategies at a local scale.

Suggested Citation

  • Robert G. D. Macnee & Akihiro Tokai, 2017. "The development of a method to determine the burden of climate change on different health outcomes at a local scale: a case study in Osaka Prefecture, Japan," Environment Systems and Decisions, Springer, vol. 37(3), pages 309-319, September.
  • Handle: RePEc:spr:envsyd:v:37:y:2017:i:3:d:10.1007_s10669-017-9636-7
    DOI: 10.1007/s10669-017-9636-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-017-9636-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-017-9636-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert G. D. Macnee & Akihiro Tokai, 2016. "Heat wave vulnerability and exposure mapping for Osaka City, Japan," Environment Systems and Decisions, Springer, vol. 36(4), pages 368-376, December.
    2. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    3. Tabuchi, Takahiro & Fukuhara, Hiroyuki & Iso, Hiroyasu, 2012. "Geographically-based discrimination is a social determinant of mental health in a deprived or stigmatized area in Japan: A cross-sectional study," Social Science & Medicine, Elsevier, vol. 75(6), pages 1015-1021.
    4. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    5. Kiyoshi Takahashi & Yasushi Honda & Seita Emori, 2007. "Assessing Mortality Risk from Heat Stress due to Global Warming," Journal of Risk Research, Taylor & Francis Journals, vol. 10(3), pages 339-354, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2017. "Advances in life cycle analysis, econometrics, optimization, R&D policy, and health decision making," Environment Systems and Decisions, Springer, vol. 37(3), pages 241-242, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Reinhard Mechler & Stefan Hochrainer & Asbjørn Aaheim & Håkon Salen & Anita Wreford, 2010. "Modelling economic impacts and adaptation to extreme events: Insights from European case studies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 737-762, October.
    3. Zachary A. Collier & James H. Lambert & Igor Linkov, 2016. "Data analysis and modeling to support policy decisions in environmental, transportation, and energy systems," Environment Systems and Decisions, Springer, vol. 36(4), pages 329-330, December.
    4. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    5. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Taesam Lee & Younghwan Choi & Vijay P. Singh, 2023. "Stochastic Spatial Binary Simulation with Multivariate Normal Distribution for Illustrating Future Evolution of Umbrella-Shape Summer Shelter under Climate Change," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    7. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    8. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    9. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    10. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    11. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    12. Rohan Best & Paul J. Burke, 2019. "Macroeconomic impacts of the 2010 earthquake in Haiti," Empirical Economics, Springer, vol. 56(5), pages 1647-1681, May.
    13. Brei, Michael & Mohan, Preeya & Strobl, Eric, 2019. "The impact of natural disasters on the banking sector: Evidence from hurricane strikes in the Caribbean," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 232-239.
    14. Hallegatte, Stéphane & Ghil, Michael, 2008. "Natural disasters impacting a macroeconomic model with endogenous dynamics," Ecological Economics, Elsevier, vol. 68(1-2), pages 582-592, December.
    15. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Delphi-based consensus study into a framework of community resilience to disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2221-2245, February.
    16. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    17. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    18. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    19. Deveci, Muhammet & Pamucar, Dragan & Gokasar, Ilgin & Isik, Mehtap & Coffman, D'Maris, 2022. "Fuzzy Einstein WASPAS approach for the economic and societal dynamics of the climate change mitigation strategies in urban mobility planning," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 1-17.
    20. Jean-Charles Hourcade & Philippe Ambrosi & Patrice Dumas, 2009. "Beyond the Stern Review: Lessons from a risky venture at the limits of the cost–benefit analysis," Post-Print hal-00716769, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:37:y:2017:i:3:d:10.1007_s10669-017-9636-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.