IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v36y2016i1d10.1007_s10669-015-9576-z.html
   My bibliography  Save this article

Cargo-specific accidental release impact zones for hazardous materials: risk and consequence comparison for ammonia and hydrogen fluoride

Author

Listed:
  • Bahareh Inanloo

    (Florida International University)

  • Berrin Tansel

    (Florida International University)

  • Xia Jin

    (Florida International University)

  • Anna Bernardo-Bricker

    (Florida International University)

Abstract

Impacts of hazardous material releases during transport depend on the characteristics of the cargo, incident location and time, weather conditions (i.e., wind direction and speed), and land use. The objectives of this research were to characterize the dispersion characteristics of two hazardous materials (ammonia and hydrogen fluoride) in relation to meteorological parameters, land use, and cargo characteristics; and evaluate the health risks associated with the exposure after accidental releases. The magnitudes of the impact zones were compared in relation to atmospheric stability and exposure levels. Impact zones were estimated by areal locations of hazardous atmospheres software and imported to ArcGIS. For ammonia, the areas impacted by exposure levels over 1100 ppm Acute Exposure Guideline Level 3 (AEGL-3) were limited to less than 0.3 miles downwind from the incident location under unstable atmospheric conditions, which favor high vertical mixing and rapid dilution, and extended further downwind to distances between 0.5 and 0.7 miles under stable atmospheric conditions. For hydrogen fluoride, the AEGL-3 impact zone (exposure levels over 44 ppm) extended between 0.6 and 0.9 miles directly downwind from the incident location under unstable conditions, and reached approximately 2.0 miles directly downwind from the incident location under stable atmospheric conditions. The results were compared with the Emergency Response Guideline (ERG 2012) and showed agreement. The multilevel analysis of impacts after hazardous material releases during transport (i.e., type of material, geographical data, dispersion profile, meteorological information) can be used for implementing appropriate response and mitigation measures for accidental releases of hazardous cargo.

Suggested Citation

  • Bahareh Inanloo & Berrin Tansel & Xia Jin & Anna Bernardo-Bricker, 2016. "Cargo-specific accidental release impact zones for hazardous materials: risk and consequence comparison for ammonia and hydrogen fluoride," Environment Systems and Decisions, Springer, vol. 36(1), pages 20-33, March.
  • Handle: RePEc:spr:envsyd:v:36:y:2016:i:1:d:10.1007_s10669-015-9576-z
    DOI: 10.1007/s10669-015-9576-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-015-9576-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-015-9576-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianjun & Hodgson, John & Erkut, Erhan, 2000. "Using GIS to assess the risks of hazardous materials transport in networks," European Journal of Operational Research, Elsevier, vol. 121(2), pages 316-329, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2016. "Introduction to the first general issue of 2016," Environment Systems and Decisions, Springer, vol. 36(1), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    2. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    3. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    4. David M. Goldberg & Jason K. Deane & Cliff T. Ragsdale, 2018. "Integrating Spatial Analytics in Global Sourcing Decisions," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 709-739, May.
    5. Zhao, Jiahong & Ke, Ginger Y., 2017. "Incorporating inventory risks in location-routing models for explosive waste management," International Journal of Production Economics, Elsevier, vol. 193(C), pages 123-136.
    6. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    7. Samanlioglu, Funda, 2013. "A multi-objective mathematical model for the industrial hazardous waste location-routing problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 332-340.
    8. Rongrong Li & Yee Leung, 2011. "Multi-objective route planning for dangerous goods using compromise programming," Journal of Geographical Systems, Springer, vol. 13(3), pages 249-271, September.
    9. Weiping Zeng & Ignacio Castillo & M. Hodgson, 2010. "A Generalized Model for Locating Facilities on a Network with Flow-Based Demand," Networks and Spatial Economics, Springer, vol. 10(4), pages 579-611, December.
    10. David M. Goldberg & Sukhwa Hong, 2019. "Minimizing the Risks of Highway Transport of Hazardous Materials," Sustainability, MDPI, vol. 11(22), pages 1-10, November.
    11. Miranda, Pablo A. & Blazquez, Carola A. & Vergara, Rodrigo & Weitzler, Sebastian, 2015. "A novel methodology for designing a household waste collection system for insular zones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 227-247.
    12. Noguchi, H. & Hienuki, S. & Fuse, M., 2020. "Network theory-based accident scenario analysis for hazardous material transport: A case study of liquefied petroleum gas transport in japan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth & Springael, Johan, 2015. "MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 105-114.
    14. Manish Verma & Vedat Verter & Michel Gendreau, 2011. "A Tactical Planning Model for Railroad Transportation of Dangerous Goods," Transportation Science, INFORMS, vol. 45(2), pages 163-174, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:36:y:2016:i:1:d:10.1007_s10669-015-9576-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.