IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v35y2015i3d10.1007_s10669-015-9558-1.html
   My bibliography  Save this article

Assessment of potential health risks due to heavy metals through vegetable consumption in a tropical area irrigated by treated wastewater

Author

Listed:
  • Preeti Verma

    (Banaras Hindu University)

  • Madhoolika Agrawal

    (Banaras Hindu University)

  • R. Sagar

    (Banaras Hindu University)

Abstract

Consumption of wastewater-irrigated vegetables is a common practice in developing countries including India. The wastewater irrigation gradually raises the contents of heavy metals in soils and vegetables. The consumption of heavy metal-rich vegetables may cause serious risk to the human health. Therefore, quantification of heavy metals in vegetables collected from wastewater-irrigated field is needed as proportion of farmers using wastewater for irrigation is increasing due to scarcity of water. The aim of the present study was to assess the heavy metal accumulation and the potential human health risks associated with consumption of contaminated vegetables irrigated with waste (WWT) and mixed wastewater (MWWT), grown in an agricultural area of Bhagwanpur, near Banaras Hindu University, Varanasi, India. Seven common vegetables growing at two differentially irrigated areas (WWT and MWWT) were considered for the study. At each site, three samples, each from water, soil and different vegetables, were taken. The samples after digestion were analysed for heavy metal contents using atomic absorption spectrophotometer. Heavy metal contents in soils, vegetables, transfer factor (TF) from soil to vegetables, metal pollution index (MPI) and their health risk in form of target hazard quotients (THQs) were calculated. Results showed significantly higher contents of heavy metals in water, soil and vegetable at WWT than MWWT. The TF value of Cd was notably greater in WWT compared to the MWWT. The values of THQ in children and adults were >1 for Pb and Cd in case of all vegetables at both WWT and MWWT. Among the vegetables, MPI was highest for B. vulgaris followed by B. botrytis, B. capitata, R. sativus, B. nigra, A. sativum and S. tuberosum. THQ for both categories were mostly higher for WWT compared at MWWT, suggesting a greater health risk to local residents from vegetable of the former than latter site. The present study suggests regular monitoring of water quality prior to discharge for irrigation uses and also points out to adopt better wastewater management strategies for proper utilization and disposal of wastewater.

Suggested Citation

  • Preeti Verma & Madhoolika Agrawal & R. Sagar, 2015. "Assessment of potential health risks due to heavy metals through vegetable consumption in a tropical area irrigated by treated wastewater," Environment Systems and Decisions, Springer, vol. 35(3), pages 375-388, September.
  • Handle: RePEc:spr:envsyd:v:35:y:2015:i:3:d:10.1007_s10669-015-9558-1
    DOI: 10.1007/s10669-015-9558-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-015-9558-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-015-9558-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinivasan, Jeena T. & Reddy, V. Ratna, 2009. "Impact of irrigation water quality on human health: A case study in India," Ecological Economics, Elsevier, vol. 68(11), pages 2800-2807, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    2. Wu, Wenyong & Ma, Meng & Hu, Yaqi & Yu, Wenchao & Liu, Honglu & Bao, Zhe, 2021. "The fate and impacts of pharmaceuticals and personal care products and microbes in agricultural soils with long term irrigation with reclaimed water," Agricultural Water Management, Elsevier, vol. 251(C).
    3. Z. A. Collier & J. H. Lambert & I. Linkov, 2015. "Editorial," Environment Systems and Decisions, Springer, vol. 35(3), pages 315-316, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    2. Chen, Xiaohong & Zhao, Jinhua & Zhou, Li, 2024. "Knowledge protects against pollution: The health effects of the cadmium rice event in China," World Development, Elsevier, vol. 175(C).
    3. Abedullah & Ali, Haseeb & Kouser, Shahzad, 2012. "Pesticide or Wastewater, Which One is Bigger Culprit for Acute Health Symptoms among Vegetable Growers in Pakistan’s Punjab," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126598, International Association of Agricultural Economists.
    4. Jessica Cook & Kate Oviatt & Deborah Main & Harpreet Kaur & John Brett, 2015. "Re-conceptualizing urban agriculture: an exploration of farming along the banks of the Yamuna River in Delhi, India," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 265-279, June.
    5. Amerasinghe, Priyani H. & Bhardwaj, Rajendra Mohan & Scott, C. & Jella, Kiran & Marshall, Fiona, 2013. "Urban wastewater and agricultural reuse challenges in India," IWMI Research Reports 158342, International Water Management Institute.
    6. Domenech, Laia & Ringler, Claudia, 2013. "The impact of irrigation on nutrition, health, and gender: A review paper with insights for Africa south of the Sahara," IFPRI discussion papers 1259, International Food Policy Research Institute (IFPRI).
    7. Vangani, Ruchi & Gerber, Nicolas & Saxena, Deepak & Mavalankar, Dileep & von Braun, Joachim, 2016. "Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India," Discussion Papers 243145, University of Bonn, Center for Development Research (ZEF).
    8. Linda Waldman & Ramila Bisht & Rajashree Saharia & Abhinav Kapoor & Bushra Rizvi & Yasir Hamid & Meghana Arora & Ima Chopra & Kumud T. Sawansi & Ritu Priya & Fiona Marshall, 2017. "Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    9. Lei Wang & Aifeng Lv, 2022. "Identification and Diagnosis of Transboundary River Basin Water Management in China and Neighboring Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    10. Amerasinghe, Priyani H. & Bhardwaj, Rajendra Mohan & Scott, Christopher A. & Jella, Kiran & Marshall, Fiona, 2013. "Urban wastewater and agricultural reuse challenges in India," IWMI Reports 147104, International Water Management Institute.
    11. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    12. Domènech, Laia, 2015. "Is reliable water access the solution to undernutrition? A review of the potential of irrigation to solve nutrition and gender gaps in Africa South of the Sahara:," IFPRI discussion papers 1428, International Food Policy Research Institute (IFPRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:35:y:2015:i:3:d:10.1007_s10669-015-9558-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.