IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v32y2012i4d10.1007_s10669-012-9398-1.html
   My bibliography  Save this article

A study on evaluation of probable sources of heavy metal pollution in groundwater of Kalpakkam region, South India

Author

Listed:
  • S. Chidambaram

    (Annamalai University)

  • U. Karmegam

    (Annamalai University)

  • M. V. Prasanna

    (Curtin University)

  • P. Sasidhar

    (Safety Research Institute, Atomic Energy Regulatory Board)

Abstract

This study investigates the heavy metal pollution vulnerability of the groundwater in the coastal aquifers of Kalpakkam region in the state of Tamilnadu, India. Integrated-approach includes pollution evaluation indices, principal component analysis (PCA), and correlation matrix (CM) to evaluate the intensity and source of pollution in groundwater. The data have been used for the calculation of heavy metal pollution index (HPI) and degree of contamination (C d). The mean metal levels in groundwater followed a descending order as: Zn > Ba > Fe > Al > Se > Mn > Cu > Ni > Pb > Cr > Mo > As > Cd > Sb > Be. The concentrations of Fe, Cd, Zn, Se, Ba, Mn, Ni, Pb, and Al in some of the groundwater samples exceed the maximum admissible concentration (MAC). The HPI and C d yield different results despite significant correlations between them. The following elemental associations were obtained from PCA and CM: Fe–Mn–Ni–Cr–Pb–Cd–Zn–Be–Al, Cu–As, Sb–As, Al–Ba and Se–Mo, which could be linked to anthropogenic sources (i.e., processes of tannery and dying industries with some contribution from the landfill leachate and municipal sewage). GIS-based factor score maps suggest that the activities of tannery industries and landfill leachate are pervasive processes in the area. This study has provided the evidence that effluents discharged from the tannery and auxiliary industries and landfill leachate are the main sources of heavy metal pollution in the groundwater. The high metal concentrations observed in the groundwater may have serious public health and potential environmental hazard implications.

Suggested Citation

  • S. Chidambaram & U. Karmegam & M. V. Prasanna & P. Sasidhar, 2012. "A study on evaluation of probable sources of heavy metal pollution in groundwater of Kalpakkam region, South India," Environment Systems and Decisions, Springer, vol. 32(4), pages 371-382, December.
  • Handle: RePEc:spr:envsyd:v:32:y:2012:i:4:d:10.1007_s10669-012-9398-1
    DOI: 10.1007/s10669-012-9398-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-012-9398-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-012-9398-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avit K. Bhowmik & Rajchandar Padmanaban & Pedro Cabral & Maria M. Romeiras, 2022. "Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    2. Nur Fatihah Mohamad Zainol & Azim Haziq Zainuddin & Ley Juen Looi & Ahmad Zaharin Aris & Noorain Mohd Isa & Anuar Sefie & Ku Mohd Kalkausar Ku Yusof, 2021. "Spatial Analysis of Groundwater Hydrochemistry through Integrated Multivariate Analysis: A Case Study in the Urbanized Langat Basin, Malaysia," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    3. S. Chidambaram & R. Thilagavathi & C. Thivya & U. Karmegam & M. V. Prasanna & AL. Ramanathan & K. Tirumalesh & P. Sasidhar, 2017. "A study on the arsenic concentration in groundwater of a coastal aquifer in south-east India: an integrated approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1015-1040, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:32:y:2012:i:4:d:10.1007_s10669-012-9398-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.