IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v25y2023i4d10.1007_s10018-023-00370-4.html
   My bibliography  Save this article

Revealed pollution abatement costs revisited

Author

Listed:
  • Rolf Färe

    (Oregon State University
    University of Maryland)

  • Shawna Grosskopf

    (Oregon State University
    Center for Environmental and Resource Economics (CERE))

  • Carl A. Pasurka

    (George Mason University)

Abstract

Surveys of the costs of inputs assigned to pollution abatement (Stated Costs) have been the principal method used to estimate pollution abatement costs. While surveys have been widely used, problems with these surveys may adversely affect their ability to accurately measure pollution abatement costs. In this paper, we propose a method that does not depend on surveys of input costs. Instead, a nonparametric cost function that models the joint production of good and bad outputs is used to identify the cost of inputs assigned to pollution abatement (Revealed Costs). The increased input costs when the bad output is not freely disposable compared to input costs when the bad output is freely disposable constitute our estimate of the revealed cost of pollution abatement. Our model is illustrated using data from coal-fired electric power plants in the United States for 2000–2005.

Suggested Citation

  • Rolf Färe & Shawna Grosskopf & Carl A. Pasurka, 2023. "Revealed pollution abatement costs revisited," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 601-629, October.
  • Handle: RePEc:spr:envpol:v:25:y:2023:i:4:d:10.1007_s10018-023-00370-4
    DOI: 10.1007/s10018-023-00370-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-023-00370-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-023-00370-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    2. Burtraw, Dallas & Krupnick, Alan & Pizer, William & Morgenstern, Richard & Shih, Jhih-Shyang, 2001. "Workshop Report: Pollution Abatement Costs and Expenditures (PACE) Survey Design for 2000 and Beyond," RFF Working Paper Series dp-01-09, Resources for the Future.
    3. Baumgartner, Stefan & Dyckhoff, Harald & Faber, Malte & Proops, John & Schiller, Johannes, 2001. "The concept of joint production and ecological economics," Ecological Economics, Elsevier, vol. 36(3), pages 365-372, March.
    4. Hampf, Benjamin & Rodseth, Kenneth, 2019. "Environmental Efficiency Measurement with Heterogeneous Input Quality: A Nonparametric Analysis of U.S. Power Plants," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118700, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Curtis Carlson & Dallas Burtraw & Maureen Cropper & Karen L. Palmer, 2000. "Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade?," Journal of Political Economy, University of Chicago Press, vol. 108(6), pages 1292-1326, December.
    6. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & William L. Weber, 2012. "Substitutability among undesirable outputs," Applied Economics, Taylor & Francis Journals, vol. 44(1), pages 39-47, January.
    7. Gerald Granderson & Diego Prior, 2013. "Environmental externalities and regulation constrained cost productivity growth in the US electric utility industry," Journal of Productivity Analysis, Springer, vol. 39(3), pages 243-257, June.
    8. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    9. Ball, E. & Fare, R. & Grosskopf, S. & Zaim, O., 2005. "Accounting for externalities in the measurement of productivity growth: the Malmquist cost productivity measure," Structural Change and Economic Dynamics, Elsevier, vol. 16(3), pages 374-394, September.
    10. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren, 2022. "Prevention or cure? Optimal abatement mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 503-531, October.
    11. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & Ron Shadbegian, 2018. "Pollution abatement and employment," Empirical Economics, Springer, vol. 54(1), pages 259-285, February.
    12. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    13. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    14. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    15. John E. Cremeans, 1977. "Conceptual Amd Statistical Issues In Developing Environmental Measures‐Recent U.S. Experience," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 23(2), pages 97-115, June.
    16. Fare, Rolf & Grosskopf, Shawna, 1983. "Measuring output efficiency," European Journal of Operational Research, Elsevier, vol. 13(2), pages 173-179, June.
    17. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    2. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & Ron Shadbegian, 2018. "Pollution abatement and employment," Empirical Economics, Springer, vol. 54(1), pages 259-285, February.
    3. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    4. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    5. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    6. Chuang Li & Subhash C. Ray, 2021. "Opportunity Cost and Employment Effect of Emission Reduction: An Inter-Industry Comparison of Targeted Pollution Reduction," Working papers 2021-13, University of Connecticut, Department of Economics.
    7. Liu, Haiying & Owens, Katharine A. & Yang, Ke & Zhang, Chunhong, 2020. "Pollution abatement costs and technical changes under different environmental regulations," China Economic Review, Elsevier, vol. 62(C).
    8. Victoria Wojcik & Harald Dyckhoff & Sebastian Gutgesell, 2017. "The desirable input of undesirable factors in data envelopment analysis," Annals of Operations Research, Springer, vol. 259(1), pages 461-484, December.
    9. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    10. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    11. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    12. repec:zbw:inwedp:752021 is not listed on IDEAS
    13. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    14. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    15. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    16. Kumar, Surender & Managi, Shunsuke & Jain, Rakesh Kumar, 2020. "CO2 mitigation policy for Indian thermal power sector: Potential gains from emission trading," Energy Economics, Elsevier, vol. 86(C).
    17. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    18. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).
    19. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    20. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    21. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).

    More about this item

    Keywords

    Pollution abatement costs; Data envelopment analysis; Nonparametric cost function; Joint production;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:25:y:2023:i:4:d:10.1007_s10018-023-00370-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.