IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v24y2022i1d10.1007_s10018-021-00311-z.html
   My bibliography  Save this article

Modelling household behavioural changes as an opportunity for sustainable home energy

Author

Listed:
  • Norzalina Zainudin

    (University Putra Malaysia)

  • Jasmine Leby Lau

    (University Putra Malaysia)

  • Chandramalar Munusami

    (Nilai University)

Abstract

This paper aims to employ behaviour change theories in predicting consumers’ intention of buying energy-efficient products. A stratified sampling of 500 face-to-face interview questionnaires was used in two regions of Peninsular Malaysia. The findings from the evaluation of absolute indices of the structural model showed that the criterion of the model is good-of-fit with values greater than 0.9. Besides, the analysis of the direct effect model also found that consumers’ intention to buy energy-efficient products is influenced by perceived product values. As for the indirect model, attitude determines the relationship between consumers’ perceived product value, subjective norm, responsibility and intention to buy energy-efficient products. A consumer’s perception of product values and attitude is crucial for consumers to form a more favourable mindset towards these green innovation products. In addition, the communication initiatives that develop consumers’ trust about the benefits of the products are some of the various ways to encourage consumers’ purchasing behaviour. Hence, this study attempts to provide a valuable insight into Malaysian consumers’ behaviour regarding energy-efficient products. Furthermore, this study extends an application of the behavioural theories by examining variables in a composite model. The findings of the study suggest that policy makers should thoroughly set the interventions to harmonise the traditional approach using rebates and subsidised incentives since behavioural interventions are considered to be valuable complements when they are jointly implemented.

Suggested Citation

  • Norzalina Zainudin & Jasmine Leby Lau & Chandramalar Munusami, 2022. "Modelling household behavioural changes as an opportunity for sustainable home energy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 73-97, January.
  • Handle: RePEc:spr:envpol:v:24:y:2022:i:1:d:10.1007_s10018-021-00311-z
    DOI: 10.1007/s10018-021-00311-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-021-00311-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-021-00311-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Chin-Seang & Ooi, Hooi-Yin & Goh, Yen-Nee, 2017. "A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia," Energy Policy, Elsevier, vol. 107(C), pages 459-471.
    2. Mizobuchi, Kenichi & Takeuchi, Kenji, 2013. "The influences of financial and non-financial factors on energy-saving behaviour: A field experiment in Japan," Energy Policy, Elsevier, vol. 63(C), pages 775-787.
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Pelenur, Marcos J. & Cruickshank, Heather J., 2012. "Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home," Energy, Elsevier, vol. 47(1), pages 348-357.
    5. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    6. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    7. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Xu & Jacob Cherian & Muhammad Zaheer & Muhammad Safdar Sial & Ubaldo Comite & Laura Mariana Cismas & Juan Felipe Espinosa Cristia & Judit Oláh, 2022. "The Role of Healthcare Employees’ Pro-Environmental Behavior for De-Carbonization: An Energy Conservation Approach from CSR Perspective," Energies, MDPI, vol. 15(9), pages 1-18, May.
    2. Joanna Rosak-Szyrocka & Justyna Żywiołek, 2022. "Qualitative Analysis of Household Energy Awareness in Poland," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spandagos, Constantine & Baark, Erik & Ng, Tze Ling & Yarime, Masaru, 2021. "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Hasan, Rajibul & Lowe, Ben & Petrovici, Dan, 2020. "Consumer adoption of pro-poor service innovations in subsistence marketplaces," Journal of Business Research, Elsevier, vol. 121(C), pages 461-475.
    3. Debora Bettiga & Lucio Lamberti & Emanuele Lettieri, 2020. "Individuals’ adoption of smart technologies for preventive health care: a structural equation modeling approach," Health Care Management Science, Springer, vol. 23(2), pages 203-214, June.
    4. Paul Juinn Bing Tan, 2013. "Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan," SAGE Open, , vol. 3(4), pages 21582440135, October.
    5. Mäntymäki, Matti & Salo, Jari, 2013. "Purchasing behavior in social virtual worlds: An examination of Habbo Hotel," International Journal of Information Management, Elsevier, vol. 33(2), pages 282-290.
    6. Bilgihan, Anil & Barreda, Albert & Okumus, Fevzi & Nusair, Khaldoon, 2016. "Consumer perception of knowledge-sharing in travel-related Online Social Networks," Tourism Management, Elsevier, vol. 52(C), pages 287-296.
    7. Garín-Muñoz, Teresa & López, Rafael & Pérez-Amaral, Teodosio & Herguera, Iñigo & Valarezo, Angel, 2019. "Models for individual adoption of eCommerce, eBanking and eGovernment in Spain," Telecommunications Policy, Elsevier, vol. 43(1), pages 100-111.
    8. Venkatesh, Viswanath & Maruping, Likoebe M. & Brown, Susan A., 2006. "Role of time in self-prediction of behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 100(2), pages 160-176, July.
    9. Joan Torrent-Sellens & Cristian Salazar-Concha & Pilar Ficapal-Cusí & Francesc Saigí-Rubió, 2021. "Using Digital Platforms to Promote Blood Donation: Motivational and Preliminary Evidence from Latin America and Spain," IJERPH, MDPI, vol. 18(8), pages 1-17, April.
    10. Alalwan, Ali Abdallah & Baabdullah, Abdullah M. & Rana, Nripendra P. & Tamilmani, Kuttimani & Dwivedi, Yogesh K., 2018. "Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust," Technology in Society, Elsevier, vol. 55(C), pages 100-110.
    11. Garima Malik & A. Sajeevan Rao, 2019. "Extended expectation-confirmation model to predict continued usage of ODR/ride hailing apps: role of perceived value and self-efficacy," Information Technology & Tourism, Springer, vol. 21(4), pages 461-482, December.
    12. repec:dgr:rugsom:04f04 is not listed on IDEAS
    13. Muhammad Rizwan & Hamna Sultan & Sadia Parveen & Shumaila Nawaz & Samreen Sattar & Maryam Sana, 2013. "Determinants of Online Shopping and Moderating Role of Innovativeness and Perceived Risk," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(2), pages 142-159, February.
    14. Riffat Ara Zannat Tama & Md Mahmudul Hoque & Ying Liu & Mohammad Jahangir Alam & Mark Yu, 2023. "An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
    15. Borhan, Muhamad Nazri & Ibrahim, Ahmad Nazrul Hakimi & Miskeen, Manssour A. Abdulasalm, 2019. "Extending the theory of planned behaviour to predict the intention to take the new high-speed rail for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external inf," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 373-384.
    16. Scott, Stephanie & Hughes, Paul & Hodgkinson, Ian & Kraus, Sascha, 2019. "Technology adoption factors in the digitization of popular culture: Analyzing the online gambling market," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    17. Karim, Sitara & Naz, Farah & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Is FinTech providing effective solutions to Small and Medium Enterprises (SMEs) in ASEAN countries?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 335-344.
    18. Sanduni I. Senaratne & Samantha M. Samarasinghe, 2019. "Factors Affecting the Intention to Adopt M-Learning," International Business Research, Canadian Center of Science and Education, vol. 12(2), pages 150-164, February.
    19. Ivan De Battista & Franco Curmi & Emanuel Said, 2021. "Influencing Factors Affecting Young People’s Attitude Towards Online Advertising: A Systematic Literature Review," International Review of Management and Marketing, Econjournals, vol. 11(3), pages 58-72.
    20. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    21. Fernanda Leão Ramos & Jorge Brantes Ferreira & Angilberto Sabino de Freitas & Juliana Werneck Rodrigues, 2018. "The Effect of Trust in the Intention to Use m-banking," Brazilian Business Review, Fucape Business School, vol. 15(2), pages 175-191, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:24:y:2022:i:1:d:10.1007_s10018-021-00311-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.