IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v1y1998i2d10.1007_bf03353897.html
   My bibliography  Save this article

Assessment of technological options in the global energy system for limiting the atmospheric CO2 concentration

Author

Listed:
  • Yasumasa Fujii

    (Yokohama National University)

  • Kenji Yamaji

    (The University of Tokyo)

Abstract

The purpose of this study was to assess comprehensively the technological measures for limiting CO2 concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system and then to sketch concrete scenarios for the desirable future development of the global energy system over the next century. To facilitate the assessment, we developed a large-scale energy system model Dynamic New Earth 21 based on the New Earth 21 model. The Dynamic New Earth 21 model has been developed to cope with newly emerging research topics, such as an integrated assessment of climate change. This paper presents the latest numerical results of this model and its outlined descriptions. In the framework of this energy model, the world is divided into 10 regions so we can evaluate the differences in regional economic and geographical conditions. The model can assess the various technological options up to the year 2100, optimizing intertemporally the sum of the discounted total energy system costs. As specific technological options, the model takes into account the following categories of technologies: energy-saving in end-use sectors, efficiency improvement in energy conversion sectors, utilization of various less carbon-intensive energy resources, disposal and recycling of CO2 recovered in the energy systems, and innovative system technologies especially with respect to hydrogen use. The results of the study suggest that the CO2 problem cannot be easily settled by any single technological option, but they also suggest that if those options are reasonably combined with one another there is technological potential for CO2 emission reduction. For limiting atmospheric CO2 concentrations to less than 550ppm over the next century, the computed optimal CO2 emission trajectory indicates that relatively modest abatement actions are expected in the near future, implying that immediate CO2 emission reduction or stabilization strategies will not necessarily lead to economically efficient outcomes.

Suggested Citation

  • Yasumasa Fujii & Kenji Yamaji, 1998. "Assessment of technological options in the global energy system for limiting the atmospheric CO2 concentration," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 1(2), pages 113-139, December.
  • Handle: RePEc:spr:envpol:v:1:y:1998:i:2:d:10.1007_bf03353897
    DOI: 10.1007/BF03353897
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF03353897
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF03353897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    2. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    3. Babiker, Mustafa & Reilly, John & Ellerman, Denny, 2000. "Japanese Nuclear Power and the Kyoto Agreement," Journal of the Japanese and International Economies, Elsevier, vol. 14(3), pages 169-188, September.
    4. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    5. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    6. Yamamoto, H. & Yamaji, K. & Fujino, J., 1999. "Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique," Applied Energy, Elsevier, vol. 63(2), pages 101-113, June.
    7. Samuel Fankhauser & Nicholas Stern, 2016. "Climate change, development, poverty and economics," GRI Working Papers 253, Grantham Research Institute on Climate Change and the Environment.
    8. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    9. Klinge Jacobsen, Henrik & Morthorst, Poul Erik & Nielsen, Lise & Stephensen, Peter, 1996. "Sammenkobling af makroøkonomiske og teknisk-økonomiske modeller for energisektoren. Hybris [Integration of bottom-up and top-down models for the energy system: A practical case for Denmark]," MPRA Paper 65676, University Library of Munich, Germany.
    10. Kejun Jiang & Tsuneyuki Morita & Toshihiko Masui & Yuzuru Matsuoka, 2000. "Global long-term greenhouse gas mitigation emission scenarios based on AIM," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 239-254, June.
    11. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    12. Kejun Jiang & Xiulian Hu, 2006. "Energy demand and emissions in 2030 in China: scenarios and policy options," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 233-250, September.
    13. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    14. Kejun Jiang & Toshihiko Masui & Tsuneyuki Morita & Yuzuru Matsuoka, 1999. "Long-term emission scenarios for China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(4), pages 267-287, December.
    15. Thorpe, Sally & Sterland, Barry & Jones, Barry P. & Wallace, Nancy A. & Pugsley, Sally-Ann, 1991. "World energy markets and uncertainty to the year 2100: implications for greenhouse policy," Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) Archive 316175, Australian Government, Australian Bureau of Agricultural and Resource Economics and Sciences.
    16. Debyani Ghosh, 2008. "Renewable Energy Strategies for Indian Power Sector," Working Papers id:1715, eSocialSciences.
    17. Tschang, F. Ted & Dowlatabadi, Hadi, 1995. "A Bayesian technique for refining the uncertainty in global energy model forecasts," International Journal of Forecasting, Elsevier, vol. 11(1), pages 43-61, March.
    18. P. Shukla & Ashish Rana & Amit Garg & Manmohan Kapshe & Rajesh Nair, 2006. "Global climate change stabilization regimes and Indian emission scenarios: Lessons for modeling of developing country transitions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 205-231, September.
    19. Huntington, Hillard G., 2021. "Model evaluation for policy insights: Reflections on the forum process," Energy Policy, Elsevier, vol. 156(C).
    20. Edmonds Jae & Reilly John, 1983. "Global Energy and C02 to the Year 2050," The Energy Journal, , vol. 4(3), pages 21-48, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:1:y:1998:i:2:d:10.1007_bf03353897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.