IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i9d10.1007_s10668-023-03645-8.html
   My bibliography  Save this article

An integrated analysis of the Mexican electrical system’s metabolic pattern and industry sector in the energy transition

Author

Listed:
  • Miguel A. Morales Mora

    (Comisión Reguladora de Energía.
    Colegio de Puebla., Dirección Académica.)

  • Andrea Marín Rovira

    (Universidad Popular Autónoma del Estado de Puebla (UPAEP))

  • Vicente A. Soriano Ramirez

    (Comisión Reguladora de Energía.)

  • Patricia López Rivera

    (Comisión Reguladora de Energía.)

  • Omar Guillen Solis

    (Comisión Reguladora de Energía.)

  • Vincent Pozos Castillo

    (Comisión Reguladora de Energía.)

  • Gonzalo AngelesOrdoñez

    (Comisión Reguladora de Energía.)

  • Alejandro Castillo Antonio

    (Comisión Reguladora de Energía.)

  • Francisco J. Sánchez Ruíz

    (Universidad Popular Autónoma del Estado de Puebla (UPAEP))

Abstract

The electricity system and the industrial sector interrelate on the path to decarbonization. The study addresses the drivers and environmental pressure within the industrial sector on the National Electricity System (NES). This article aims to characterize the metabolic pattern of the NES and the industrial sector using the Multiscale Integrated Analysis of Social and Ecological Metabolism (MuSIASEM) from a bioeconomic perspective to identify fields of opportunity in the regulatory policy instruments. A set of extensive and intensive variables (2019) on energy, production factors, and emissions was used at different hierarchical levels based on both subsectors. Our results show that the NES used primary energy sources (PES) and secondary energy carriers to fulfill its functions, of which 72% were domestic sources and 28% were imported. México imported 79.5% of the natural gas (NG) for electricity generation. However, there are favorable conditions for renewable PES to increase the installed capacity of solar plants between 3 and 4 orders of magnitude and 2–3 in wind power from the current capacity. NES's energy consumption per hour of human time is 17,388 MJ/h, with 65% being the heat equivalent to a total energy input consumed of 2139 PJ/y. Public plants contributed 43.7% to the generation, and the independent and self-supply producers the rest. End uses needed the supply of 69.3% of electricity from baseload plants. Sixty-three percent of the metabolic pattern of the industrial sector is based on heat and fuel processes, which depend on NG imports. The NES is reorganizing and recovering its energy autonomy.

Suggested Citation

  • Miguel A. Morales Mora & Andrea Marín Rovira & Vicente A. Soriano Ramirez & Patricia López Rivera & Omar Guillen Solis & Vincent Pozos Castillo & Gonzalo AngelesOrdoñez & Alejandro Castillo Antonio & , 2024. "An integrated analysis of the Mexican electrical system’s metabolic pattern and industry sector in the energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24313-24338, September.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:9:d:10.1007_s10668-023-03645-8
    DOI: 10.1007/s10668-023-03645-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03645-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03645-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Julien-François & Scheidel, Arnim, 2018. "In Search of Substantive Economics: Comparing Today's Two Major Socio-metabolic Approaches to the Economy – MEFA and MuSIASEM," Ecological Economics, Elsevier, vol. 144(C), pages 186-194.
    2. Velasco-Fernández, Raúl & Giampietro, Mario & Bukkens, Sandra G.F., 2018. "Analyzing the energy performance of manufacturing across levels using the end-use matrix," Energy, Elsevier, vol. 161(C), pages 559-572.
    3. Pérez-Sánchez, Laura & Giampietro, Mario & Velasco-Fernández, Raúl & Ripa, Maddalena, 2019. "Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona," Energy Policy, Elsevier, vol. 124(C), pages 13-22.
    4. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
    5. Helmut Haberl & Dominik Wiedenhofer & Stefan Pauliuk & Fridolin Krausmann & Daniel B. Müller & Marina Fischer-Kowalski, 2019. "Contributions of sociometabolic research to sustainability science," Nature Sustainability, Nature, vol. 2(3), pages 173-184, March.
    6. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    7. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    8. van Zalk, John & Behrens, Paul, 2018. "The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S," Energy Policy, Elsevier, vol. 123(C), pages 83-91.
    9. Labanca, Nicola & Bertoldi, Paolo, 2018. "Beyond energy efficiency and individual behaviours: policy insights from social practice theories," Energy Policy, Elsevier, vol. 115(C), pages 494-502.
    10. Sarmiento, Luis & Molar-Cruz, Anahi & Avraam, Charalampos & Brown, Maxwell & Rosellón, Juan & Siddiqui, Sauleh & Rodríguez, Baltazar Solano, 2021. "Mexico and U.S. power systems under variations in natural gas prices," Energy Policy, Elsevier, vol. 156(C).
    11. Freire-González, Jaume & Ho, Mun S., 2022. "Policy strategies to tackle rebound effects: A comparative analysis," Ecological Economics, Elsevier, vol. 193(C).
    12. Di Felice, Louisa Jane & Ripa, Maddalena & Giampietro, Mario, 2019. "An alternative to market-oriented energy models: Nexus patterns across hierarchical levels," Energy Policy, Elsevier, vol. 126(C), pages 431-443.
    13. Mohammad S. Masnadi & Giacomo Benini & Hassan M. El-Houjeiri & Alice Milivinti & James E. Anderson & Timothy J. Wallington & Robert Kleine & Valerio Dotti & Patrick Jochem & Adam R. Brandt, 2021. "Carbon implications of marginal oils from market-derived demand shocks," Nature, Nature, vol. 599(7883), pages 80-84, November.
    14. Aragão, Amanda & Giampietro, Mario, 2016. "An integrated multi-scale approach to assess the performance of energy systems illustrated with data from the Brazilian oil and natural gas sector," Energy, Elsevier, vol. 115(P2), pages 1412-1423.
    15. Ripa, M. & Di Felice, L.J. & Giampietro, M., 2021. "The energy metabolism of post-industrial economies. A framework to account for externalization across scales," Energy, Elsevier, vol. 214(C).
    16. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
    17. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    18. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    19. Manfroni, Michele & Velasco-Fernández, Raúl & Pérez-Sánchez, Laura & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The profile of time allocation in the metabolic pattern of society: An internal biophysical limit to economic growth," Ecological Economics, Elsevier, vol. 190(C).
    20. Radulescu, Doina & Sulger, Philippe, 2022. "Interdependencies between countries in the provision of energy," Energy Economics, Elsevier, vol. 107(C).
    21. Giampietro, Mario, 2019. "On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth," Ecological Economics, Elsevier, vol. 162(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    2. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    3. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    4. Pérez Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2024. "Analyzing the energy metabolism of the automotive industry to study the differences found in this sector across EU countries," Energy, Elsevier, vol. 296(C).
    5. Ripa, M. & Di Felice, L.J. & Giampietro, M., 2021. "The energy metabolism of post-industrial economies. A framework to account for externalization across scales," Energy, Elsevier, vol. 214(C).
    6. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    7. LaRota-Aguilera, María José & Delgadillo-Vargas, Olga Lucía & Tello, Enric, 2022. "Sociometabolic research in Latin America: A review on advances and knowledge gaps in agroecological trends and rural perspectives," Ecological Economics, Elsevier, vol. 193(C).
    8. Maria Sylvia Macchione Saes & Beatriz Macchione Saes & Elis Regina Monte Feitosa & Peter Poschen & Adalberto Luis Val & Jacques Marcovitch, 2023. "When Do Supply Chains Strengthen Biological and Cultural Diversity? Methods and Indicators for the Socio-Biodiversity Bioeconomy," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    9. Manfroni, Michele & Velasco-Fernández, Raúl & Pérez-Sánchez, Laura & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The profile of time allocation in the metabolic pattern of society: An internal biophysical limit to economic growth," Ecological Economics, Elsevier, vol. 190(C).
    10. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Susana Toboso‐Chavero & Gara Villalba & Xavier Gabarrell Durany & Cristina Madrid‐López, 2021. "More than the sum of the parts: System analysis of the usability of roofs in housing estates," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1284-1299, October.
    12. González-López, Rafael & Giampietro, Mario, 2018. "Relational analysis of the oil and gas sector of Mexico: Implications for Mexico's energy reform," Energy, Elsevier, vol. 154(C), pages 403-414.
    13. Pérez-Sánchez, Laura & Giampietro, Mario & Velasco-Fernández, Raúl & Ripa, Maddalena, 2019. "Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona," Energy Policy, Elsevier, vol. 124(C), pages 13-22.
    14. Whiting, Kai & Carmona, Luis Gabriel & Brand-Correa, Lina & Simpson, Edward, 2020. "Illumination as a material service: A comparison between Ancient Rome and early 19th century London," Ecological Economics, Elsevier, vol. 169(C).
    15. Parra, Rony & Di Felice, Louisa Jane & Giampietro, Mario & Ramos-Martin, Jesus, 2018. "The metabolism of oil extraction: A bottom-up approach applied to the case of Ecuador," Energy Policy, Elsevier, vol. 122(C), pages 63-74.
    16. Di Felice, Louisa Jane & Pérez-Sánchez, Laura & Manfroni, Michele & Giampietro, Mario, 2024. "Towards nexus thinking in energy systems modelling: A multi-scale, embodied perspective," Energy Policy, Elsevier, vol. 187(C).
    17. Clive Spash & Tone Smith, 2019. "Of Ecosystems and Economies: Re-connecting Economics with Reality," SRE-Disc sre-disc-2019_03, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    18. Gaspar Manzanera-Benito & Iñigo Capellán-Pérez, 2021. "Mapping the Energy Flows and GHG Emissions of a Medium-Size City: The Case of Valladolid (Spain)," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    19. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    20. Martin, Nick & Talens-Peiró, Laura & Villalba-Méndez, Gara & Nebot-Medina, Rafael & Madrid-López, Cristina, 2023. "An energy future beyond climate neutrality: Comprehensive evaluations of transition pathways," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:9:d:10.1007_s10668-023-03645-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.