IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03524-2.html
   My bibliography  Save this article

Green development evaluation of China’s Yangtze River Economic Belt based on hierarchical clustering and composite ecosystem index system

Author

Listed:
  • Ting Yang

    (Anhui Medical University)

  • Kaile Zhou

    (Hefei University of Technology)

Abstract

Green development evaluation is an important way for understanding the development status of a region. This study focuses on the green development evaluation of China’s Yangtze River Economic Belt, which includes 11 provinces across the eastern, central, and western China. The population and gross domestic product of this area both exceed 40% of the national total. We first established a city-level green development evaluation index system, which includes indicators in the ecological, economic and social dimensions, based on complex ecosystem theory. There are two sub-dimensions under each dimension, and there are totally 21 indicators at the bottom layer. Then, we collected relevant data to measure the 21 indicators in three dimensions of the 110 cities in the Yangtze River Economic Belt area in 2017. Finally, the 110 cities were divided into 6 groups with hierarchical clustering. The green development level and characteristics of each group of cities were compared and analyzed. The results show that the green development levels of cities in China’s Yangtze River Economic Belt are quite different and have different characteristics. In particular, some cities are facing dual pressures in the economy and the ecology. This study can support formulating more targeted green development policies and regional collaboration policies for the Yangtze River Economic Belt area. It also has important reference value for the green development evaluation of other regions.

Suggested Citation

  • Ting Yang & Kaile Zhou, 2024. "Green development evaluation of China’s Yangtze River Economic Belt based on hierarchical clustering and composite ecosystem index system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21197-21216, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03524-2
    DOI: 10.1007/s10668-023-03524-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03524-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03524-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D'Adamo, Idiano & Falcone, Pasquale Marcello & Imbert, Enrica & Morone, Piergiuseppe, 2020. "A Socio-economic Indicator for EoL Strategies for Bio-based Products," Ecological Economics, Elsevier, vol. 178(C).
    2. Topi, Corrado & Esposto, Edoardo & Marini Govigli, Valentino, 2016. "The economics of green transition strategies for cities: Can low carbon, energy efficient development approaches be adapted to demand side urban water efficiency?," Environmental Science & Policy, Elsevier, vol. 58(C), pages 74-82.
    3. Song, Yang & Yeung, Godfrey & Zhu, Daolin & Zhang, Lixin & Xu, Yang & Zhang, Lanyue, 2020. "Efficiency of logistics land use: The case of Yangtze River Economic Belt in China, 2000–2017," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Xu, Xibao & Jiang, Bo & Chen, Minkun & Bai, Yang & Yang, Guishan, 2020. "Strengthening the effectiveness of nature reserves in representing ecosystem services: The Yangtze River Economic Belt in China," Land Use Policy, Elsevier, vol. 96(C).
    5. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    6. Lara Allende, Alejandro & Stephan, André, 2022. "Life cycle embodied, operational and mobility-related energy and greenhouse gas emissions analysis of a green development in Melbourne, Australia," Applied Energy, Elsevier, vol. 305(C).
    7. Idiano D’Adamo & Pasquale Marcello Falcone & Enrica Imbert & Piergiuseppe Morone, 2022. "Exploring regional transitions to the bioeconomy using a socio-economic indicator: the case of Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(3), pages 989-1021, October.
    8. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    9. Li, Xin & Ma, Xiaodong & Hu, Zongnan & Li, Siyuan, 2021. "Investigation of urban green space equity at the city level and relevant strategies for improving the provisioning in China," Land Use Policy, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhamad Faizal Bin Mohamed Noor & Nitanan Koshy Matthew & Chong Leong Puan, 2024. "Consumers’ Willingness to Pay for an Increase Fee in Biodegradable Plastic Bag Use in Bandar Baru Bangi, Selangor, Malaysia," SAGE Open, , vol. 14(2), pages 21582440241, April.
    2. Weiping Tang & Zhengjia Niu & Zili Wei & Liandong Zhu, 2022. "Sustainable Development of Eco-Cities: A Bibliometric Review," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    3. Cristian Barra & Pasquale Marcello Falcone, 2024. "Does institutional quality matter for bioeconomy performance? Insights from Italian regions," Economic Change and Restructuring, Springer, vol. 57(6), pages 1-31, December.
    4. Spyridoula Gerassimidou & Olwenn V. Martin & Gilenny Yamily Feliz Diaz & Chaoying Wan & Dimitrios Komilis & Eleni Iacovidou, 2022. "Systematic Evidence Mapping to Assess the Sustainability of Bioplastics Derived from Food Waste: Do We Know Enough?," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    5. Fang, Lei, 2022. "Measuring and decomposing group performance under centralized management," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1006-1013.
    6. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    7. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    8. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    10. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    11. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    12. Zhen Yang & Weijun Gao, 2022. "Evaluating the Coordinated Development between Urban Greening and Economic Growth in Chinese Cities during 2005 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    13. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    14. Yongrok Choi & Hyoungsuk Lee & Hojin Jeong & Jahira Debbarma, 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments," Land, MDPI, vol. 12(2), pages 1-15, February.
    15. Xiangyan Wang & Jinye Li & Nannan Wang, 2023. "Are Economic Growth Pressures Inhibiting Green Total Factor Productivity Growth?," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    16. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    17. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    18. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    19. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    20. Junran Dong & Desheng Wu, 2020. "An Evaluation of the Impact of Ecological Compensation on the Cross-Section Efficiency Using SFA and DEA: A Case Study of Xin’an River Basin," Sustainability, MDPI, vol. 12(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03524-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.