IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i11d10.1007_s10668-024-04529-1.html
   My bibliography  Save this article

Yield optimization of nonedible vegetable oil-based bio-lubricant using design of experiments

Author

Listed:
  • Rajendra Uppar

    (Manipal Academy of Higher Education)

  • P. Dinesha

    (Manipal Academy of Higher Education)

  • Shiva Kumar

    (Manipal Academy of Higher Education)

Abstract

In recent years, there has been a focused effort to reduce the harmful effects of synthetic and mineral-based lubricants by emphasizing the use of biodegradable-based lubricants. These lubricants play a crucial role in minimizing friction, ensuring smooth operation of machines, and reducing the likelihood of frequent failures. With petroleum-based reserves depleting worldwide, prices are rising, and environmental damage is increasing. However, biolubricants derived from nonedible vegetable oils offer environmental benefits as they are nontoxic, emit minimal greenhouse gases, and are biodegradable. In this study, biolubricants are synthesized from jatropha and jojoba oil using sulphuric acid (H2SO4) and hydrochloric acid (HCl) as catalysts through the transesterification and epoxidation processes. The optimization of influencing parameters is achieved using Taguchi’s orthogonal array, a statistical methodology. By employing design of experiments (DOE), the number of experimental trials is minimized while providing comprehensive details on the impact of control factors such as molar ratio, catalyst concentrations, and temperature. The results obtained from DOE reveal that the best optimized yield for jatropha biolubricant with H2SO4 and HCl catalysts is achieved with a molar ratio of 0.5:1.5, a temperature of 70 °C, and a catalyst concentration of 1.2 ml. The experimental yield for jatropha biolubricant with H2SO4 and HCl catalysts was measured at 226 ml and 238 ml, respectively, while the model predicted yield was 221 ml and 231 ml, respectively. The experimental yield for jojoba biolubricant with H2SO4 and HCl catalysts was recorded at 232 ml and 248 ml respectively, whereas the model predicted yield was 226 ml and 245 ml, respectively. Based on the analysis of variance (ANOVA) results, it is evident that among the three control factors, the molar ratio significantly influences the yield of both jatropha and jojoba biolubricants, as indicated by a p-value of less than 5%. The percentage contribution of the molar ratio in jatropha biolubricant with H2SO4 and HCl catalysts is found to be 98.99% and 97.2%, respectively. Furthermore, the R2 value, which exceeds 90%, signifies a strong relationship between the independent and dependent variables. The deviation between the experimental and regression-predicted equations for the yield remains within 2.5% for all combinations of jatropha and jojoba biolubricants. In conclusion, the study successfully prepared biolubricants from jatropha and jojoba-based non-edible vegetable oils and determined the optimal conditions for their production. Graphical abstract

Suggested Citation

  • Rajendra Uppar & P. Dinesha & Shiva Kumar, 2024. "Yield optimization of nonedible vegetable oil-based bio-lubricant using design of experiments," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29557-29582, November.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-024-04529-1
    DOI: 10.1007/s10668-024-04529-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-024-04529-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-024-04529-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fiza Shaheen & Muhammad Saeed Lodhi & Joanna Rosak-Szyrocka & Khalid Zaman & Usama Awan & Muhammad Asif & Waqas Ahmed & Maria Siddique, 2022. "Cleaner Technology and Natural Resource Management: An Environmental Sustainability Perspective from China," Clean Technol., MDPI, vol. 4(3), pages 1-23, June.
    2. Banerjee, A. & Chakraborty, R., 2009. "Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 490-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    2. Evangelia Pagona & Kyriaki Kalaitzidou & Vasileios Zaspalis & Anastasios Zouboulis & Manassis Mitrakas, 2022. "Effects of MgO and Fe 2 O 3 Addition for Upgrading the Refractory Characteristics of Magnesite Ore Mining Waste/By-Products," Clean Technol., MDPI, vol. 4(4), pages 1-24, October.
    3. Wang, Zhe & Teng, Yin-Pei & Wu, Shuzhao & Liu, Yuxiang & Liu, Xianchang, 2023. "Geopolitical risk, financial system and natural resources extraction: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    4. Song, Yi & Hao, Yuqing, 2024. "Understanding the relationship between Fintech, Natural Resources, Green Finance, and Environmental Sustainability in China: A BARDL approach," Resources Policy, Elsevier, vol. 89(C).
    5. Gojun, Martin & Šalić, Anita & Zelić, Bruno, 2021. "Integrated microsystems for lipase-catalyzed biodiesel production and glycerol removal by extraction or ultrafiltration," Renewable Energy, Elsevier, vol. 180(C), pages 213-221.
    6. Khan, Muhammad Tufail & Imran, Muhammad, 2023. "Unveiling the Carbon Footprint of Europe and Central Asia: Insights into the Impact of Key Factors on CO2 Emissions," MPRA Paper 116484, University Library of Munich, Germany, revised 22 Feb 2023.
    7. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Jules-Eric Tchapchet-Tchouto & Joseph Pasky Ngameni, 2024. "Better Environmental Tax Regulations, better Structural Change and Innovation: Evidence from CFA Franc countries along Africa’s green industrialization outlook," SN Business & Economics, Springer, vol. 4(11), pages 1-23, November.
    9. Guilherme Luz Tortorella & Anupama Prashar & Jiju Antony & Flavio S. Fogliatto & Vicente Gonzalez & Moacir Godinho Filho, 2024. "Industry 4.0 adoption for healthcare supply chain performance during COVID-19 pandemic in Brazil and India: the mediating role of resilience abilities development," Operations Management Research, Springer, vol. 17(2), pages 389-405, June.
    10. Wang, Zhiwei & Huang, Yongjun, 2023. "Natural resources and trade-adjusted carbon emissions in the BRICS: The role of clean energy," Resources Policy, Elsevier, vol. 86(PA).
    11. Zhao, Yunying & Wang, Wenju & Liang, Zhentang & Luo, Peng, 2024. "Racing towards zero carbon: Unraveling the interplay between natural resource rents, green innovation, geopolitical risk and environmental pollution in BRICS countries," Resources Policy, Elsevier, vol. 88(C).
    12. Elena Khan & Kadir Ozaltin & Damiano Spagnuolo & Andres Bernal-Ballen & Maxim V. Piskunov & Antonio Di Martino, 2023. "Biodiesel from Rapeseed and Sunflower Oil: Effect of the Transesterification Conditions and Oxidation Stability," Energies, MDPI, vol. 16(2), pages 1-13, January.
    13. Luqman, Muhammad, 2024. "Transition towards natural resource rents and green technology to achieve China's COP26 success: A novel insights in the case of trade openness and environmental pollution," Resources Policy, Elsevier, vol. 92(C).
    14. Zhao, Fang & Xu, Yi & Ma, Wanying, 2023. "Geodiversity and natural resource management: The importance of combustible renewables and waste in China," Resources Policy, Elsevier, vol. 85(PB).
    15. Perumal, Govindhan, 2024. "Production of biodiesel from waste cooking oil using a novel surface-functionalized CaMoO4/ TiO2 solid catalyst," Renewable Energy, Elsevier, vol. 228(C).
    16. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    17. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    18. Han Yan & Md. Qamruzzaman & Sylvia Kor, 2023. "Nexus between Green Investment, Fiscal Policy, Environmental Tax, Energy Price, Natural Resources, and Clean Energy—A Step towards Sustainable Development by Fostering Clean Energy Inclusion," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    19. Tang, Ziran & Liu, Yuqing & Zhang, Leilei & Gu, Huimin & Liao, Yuxuan, 2023. "Natural resources, cleaner electricity production and economic performance," Resources Policy, Elsevier, vol. 86(PB).
    20. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-024-04529-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.