IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i4d10.1007_s10668-022-02169-x.html
   My bibliography  Save this article

China’s agricultural ecological efficiency and spatial spillover effect

Author

Listed:
  • Guoyong Wu

    (Guizhou University
    Guizhou University
    Guizhou Grassroots Social Governance Innovation High-End Think Tank Guiyang)

  • Noman Riaz

    (Guizhou University)

  • Rui Dong

    (Ocean University of China)

Abstract

The agriculture sector is the most important sector for the rural and urban population, because it is the basic supporting sector for industry and development of the national economy of developing countries. More agricultural crop productivity through intensive agriculture chemical, by ignoring the negative impact on the environment create some adverse effects like water pollution, soil erosion, fish die-off, and biodiversity reduction. So, agriculture's ecological efficiency has become the most important point for research. The study aimed to measure the agricultural eco-efficiency of China. The study has been based on the perspective of eco-civilization construction, agricultural nonpoint source pollution emissions, and carbon emissions into the unexpected output indicators of agricultural eco-efficiency. The unexpected output super-SBM model and spatial Durbin model have been used for empirical results. The data have been collected from China's statistical yearbook and the data collection time span has 1998 to 2018. The unexpected output super-SBM model and spatial Durbin model calculated the value of agricultural eco-efficiency and analyzed the dynamic changes of agricultural eco-efficiency in two dimensions (the time change and province difference). In addition, the spatial spillover effect of agricultural eco-efficiency has been analyzed by the spatial panel econometrical model. The results showed that the average value of agricultural eco-efficiency in China from 1998 to 2018 has 0.665. The highest difference has been 0.475. The results also show that the negative correlation had a weakening trend, while the positive correlation had a strengthening trend. The trend has been reflected in the agricultural ecological efficiency of neighboring provinces. The results of the spatial analysis for agricultural eco-efficiency in China show that the spatial correlation of China is significant. The study concluded that the overall efficiency has been not high, but in a fluctuation, the trend of slow rise indicates that China's agricultural eco-efficiency has enough room for progress and development potential. Outside the provinces, other provinces need to optimize the input and output to improve the eco-efficiency value. So, the study recommended that from the perspective of resource input, too much resource input will reduce agricultural ecological efficiency. How to use the least input, especially natural resources (land and water) to obtain the greatest economic benefits, is one of the ways to improve agricultural ecological efficiency.

Suggested Citation

  • Guoyong Wu & Noman Riaz & Rui Dong, 2023. "China’s agricultural ecological efficiency and spatial spillover effect," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3073-3098, April.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:4:d:10.1007_s10668-022-02169-x
    DOI: 10.1007/s10668-022-02169-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02169-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02169-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui Xiang & Ya Hui Wang & Qi Qi Huang & Qing Yuan Yang, 2020. "How Much Is the Eco-Efficiency of Agricultural Production in West China? Evidence from the Village Level Data," IJERPH, MDPI, vol. 17(11), pages 1-15, June.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    2. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    4. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    5. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    6. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    7. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    8. Yulin Lu & Chengyu Li & Min-Jae Lee, 2023. "A Study on the Measurement and Influences of Energy Green Efficiency: Based on Panel Data from 30 Provinces in China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    9. Ying Li & Yung-Ho Chiu & Tai-Yu Lin & Tzu-Han Chang, 2020. "Pre-Evaluating the Technical Efficiency Gains from Potential Mergers and Acquisitions in the IC Design Industry," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 525-559, April.
    10. Karima Kourtit, 2017. "Effective Clusters as Territorial Performance Engines in a Regional Development Strategy - A Triple-Layer DEA Assessment of the Aviation Valley in Poland," REGION, European Regional Science Association, vol. 4, pages 39-63.
    11. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    12. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    13. Haixiang Xu & Rui Zhang, 2024. "Dynamic Analysis of Urban Land Use Efficiency in the Western Taiwan Strait Economic Zone," Land, MDPI, vol. 13(8), pages 1-26, August.
    14. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    16. Zhen Shi & Fengping Wu & Huinan Huang & Xinrui Sun & Lina Zhang, 2019. "Comparing Economics, Environmental Pollution and Health Efficiency in China," IJERPH, MDPI, vol. 16(23), pages 1-30, December.
    17. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    18. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    19. Huayong Niu & Zhishuo Zhang & Yao Xiao & Manting Luo & Yumeng Chen, 2022. "A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    20. Kao, Chiang & Liu, Shiang-Tai, 2020. "A slacks-based measure model for calculating cross efficiency in data envelopment analysis," Omega, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:4:d:10.1007_s10668-022-02169-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.