IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02611-0.html
   My bibliography  Save this article

A review of environmental and economic aspects of medical devices, illustrated with a comparative study of double-lumen tubes used for one-lung ventilation

Author

Listed:
  • Birgitte Lilholt Sørensen

    (University of Southern Denmark)

  • Sara Larsen

    (Global Health Economist, Ambu A/S)

  • Claus Andersen

    (Odense University Hospital)

Abstract

When health care management considers implementing a new technology such as a medical device, it is crucial to take workflow, clinical outcome, economy, and environmental impacts into consideration in the decision-making process. This study outlines the knowledge status of this complex challenge via a systematic literature review (SLR). The SLR found 133 of 1570 screened publications that covered relevant frameworks for choosing hospital equipment (i.e., related economics, life cycle assessment, waste generation and health issues). Yet, just five publications addressed choosing single-use vs. reuse of tubes or similar types of equipment by economic and environmental considerations through a systematic quantitative approach. The SLR reveals few publicly available peer-reviewed studies for the optimal sustainable choice of equipment. This study assesses environmental impacts of carbon dioxide (CO2) emissions as CO2-equivalents and resource consumption of a single-use double-lumen tube (DLT) combined with a reusable bronchoscope were compared to a single-use DLT with an integrated single-use camera. Camera DLTs exclude or minimize the need for a bronchoscope to verify correct tube placement during one-lung ventilation. The life cycle assessment shows that the materials and energy used and needed for personnel protective equipment and cleaning of the reusable bronchoscope contribute significantly to CO2-equivalent emissions. To ensure the sustainable choice of equipment this aspect must not be overlooked. Secondly, future reuse of plastic waste materials from the use can contribute significantly to better environmental performance.

Suggested Citation

  • Birgitte Lilholt Sørensen & Sara Larsen & Claus Andersen, 2023. "A review of environmental and economic aspects of medical devices, illustrated with a comparative study of double-lumen tubes used for one-lung ventilation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13219-13252, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02611-0
    DOI: 10.1007/s10668-022-02611-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02611-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02611-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoffer Lilja Terjesen & Julia Kovaleva & Lars Ehlers, 2017. "Early Assessment of the Likely Cost Effectiveness of Single-Use Flexible Video Bronchoscopes," PharmacoEconomics - Open, Springer, vol. 1(2), pages 133-141, June.
    2. Martin Hoyle, 2011. "Accounting for the Drug Life Cycle and Future Drug Prices in Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 29(1), pages 1-15, January.
    3. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    4. Catia Milena Lopes & Annibal José Scavarda & Mauricio Nunes Macedo de Carvalho & Guilherme Vaccaro & André Luis Korzenowski, 2019. "Analysis of Sustainability in Hospital Laundry: The Social, Environmental, and Economic (Cost) Risks," Resources, MDPI, vol. 8(1), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    2. Pinto, Edwin S. & Serra, Luis M. & Lázaro, Ana, 2020. "Evaluation of methods to select representative days for the optimization of polygeneration systems," Renewable Energy, Elsevier, vol. 151(C), pages 488-502.
    3. Aikaterini Papadimitriou & Anastasios Tosios & Eugenia Giannini, 2021. "Techno-Economic Performance Assessment of a Trigeneration System Operating in a Hospital," Energies, MDPI, vol. 14(16), pages 1-21, August.
    4. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    6. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    7. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    8. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    9. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    10. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    11. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    12. Monica Carvalho & Dean L. Millar, 2012. "Concept Development of Optimal Mine Site Energy Supply," Energies, MDPI, vol. 5(11), pages 1-20, November.
    13. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
    14. Sergio García García & Vicente Rodríguez Montequín & Marina Díaz Piloñeta & Susana Torno Lougedo, 2021. "Multi-Objective Optimization of Steel Off-Gas in Cogeneration Using the ε-Constraint Method: A Combined Coke Oven and Converter Gas Case Study," Energies, MDPI, vol. 14(10), pages 1-21, May.
    15. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.
    16. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    17. Aviso, Kathleen B. & Tan, Raymond R., 2018. "Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems," Energy, Elsevier, vol. 154(C), pages 258-268.
    18. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    19. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    20. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02611-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.