IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02596-w.html
   My bibliography  Save this article

Energy input–output analysis and greenhouse gas emission in okra and tomato production in Chotanagpur plateau region of India

Author

Listed:
  • B. Sarkar

    (ICAR-Research Complex for Eastern Region)

  • B. Das

    (ICAR-Research Complex for Eastern Region)

  • P. K. Sundaram

    (ICAR-Research Complex for Eastern Region)

  • S. S. Mali

    (ICAR-Research Complex for Eastern Region)

  • A. P. Anurag

    (ICAR-Research Complex for Eastern Region)

  • A. Upadhyaya

    (ICAR-Research Complex for Eastern Region)

  • N. Chandra

    (ICAR-Research Complex for Eastern Region)

  • B. P. Bhatt

    (KAB-II)

  • A. Kumar

    (Delhi Technological University)

Abstract

The information on greenhouse gas (GHG) emission and energy use patterns from vegetable production in the Chotanagpur plateau region of Jharkhand state is minimal. The current study analyzed the energy input–output and GHG emission and their relationship with the productivity of two critical vegetables grown in the region, viz. summer season okra and tomato. In this regard, data were collected from 30 vegetable farmers of the region in a pretested questionnaire through personal interviews. The results show that the overall energy input used in the okra production was 8828.71 MJ ha−1 of which human energy (27.62%), petrol (27.31%), farmyard manure (13.59%), and animal energy (13.22%) contributed the primary inputs. The total energy required for tomato production was 4798.66 MJ ha−1, where petrol (25.13%) contributed the highest, followed by fertilizer (16.94%), diesel (14.67%), electricity (12.06%), farmyard manure (12.03%), and human energy (11.65%), respectively. The energy ratio (energy output to energy input) for okra and tomato was estimated at 2.85 and 7.58, respectively. The benefit cost ratios for tomato and okra production were 7.87 and 1.71, respectively, showing that the cultivation of both the vegetables is remunerative in the region, with tomato being more remunerative than okra. The total GHG emission was 875.41 and 322.75 kg CO2eq ha−1 for okra and tomato, respectively. The economical use of inputs could help reduce GHG emissions in vegetable production.

Suggested Citation

  • B. Sarkar & B. Das & P. K. Sundaram & S. S. Mali & A. P. Anurag & A. Upadhyaya & N. Chandra & B. P. Bhatt & A. Kumar, 2023. "Energy input–output analysis and greenhouse gas emission in okra and tomato production in Chotanagpur plateau region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12945-12964, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02596-w
    DOI: 10.1007/s10668-022-02596-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02596-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02596-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassiri, Seyed Mehdi & Singh, Surendra, 2009. "Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique," Applied Energy, Elsevier, vol. 86(7-8), pages 1320-1325, July.
    2. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    3. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    4. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    5. Hamedani, Sara Rajabi & Shabani, Zeinab & Rafiee, Shahin, 2011. "Energy inputs and crop yield relationship in potato production in Hamadan province of Iran," Energy, Elsevier, vol. 36(5), pages 2367-2371.
    6. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    7. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    8. Tuti, M.D. & Prakash, Ved & Pandey, B.M. & Bhattacharyya, R. & Mahanta, D. & Bisht, J.K. & Kumar, Mukesh & Mina, B.L. & Kumar, N. & Bhatt, J.C. & Srivastva, A.K., 2012. "Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas," Energy, Elsevier, vol. 45(1), pages 986-993.
    9. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    10. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    11. Yildizhan, Hasan & Taki, Morteza, 2018. "Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey," Energy, Elsevier, vol. 156(C), pages 401-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    2. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    3. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    4. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    5. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    6. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    7. Rahman, Sanzidur & Rahman, Md. Sayedur, 2013. "Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh," Energy, Elsevier, vol. 49(C), pages 329-336.
    8. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    9. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    10. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    11. Rahman, Sanzidur & Hasan, M. Kamrul, 2014. "Energy productivity and efficiency of wheat farming in Bangladesh," Energy, Elsevier, vol. 66(C), pages 107-114.
    12. Alireza Koocheki & Reza Ghorbani & Farzad Mondani & Yaser Alizade, 2011. "Pulses Production Systems in Term of Energy Use Efficiency and Economical Analysis in Iran," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 95-106.
    13. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).
    14. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    15. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    16. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    17. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    18. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    19. Tuti, M.D. & Prakash, Ved & Pandey, B.M. & Bhattacharyya, R. & Mahanta, D. & Bisht, J.K. & Kumar, Mukesh & Mina, B.L. & Kumar, N. & Bhatt, J.C. & Srivastva, A.K., 2012. "Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas," Energy, Elsevier, vol. 45(1), pages 986-993.
    20. Elahi, Ehsan & Khalid, Zainab, 2022. "Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental emissions of commercial fish farms," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02596-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.