IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i10d10.1007_s10668-022-02556-4.html
   My bibliography  Save this article

Simulation modeling and analysis of carbon emission reduction potential of multi-energy generation

Author

Listed:
  • Dongfang Ren

    (North China Electric Power University
    North China Electric Power University)

  • Xiaopeng Guo

    (North China Electric Power University
    North China Electric Power University)

Abstract

The carbon emission of the energy industry is mainly generated by power generation. Adjusting the power generation structure of multiple energy sources, so as to control the carbon emission of the power generation industry and measure its emission reduction space, is the key for power generation industry to achieve the goal of "dual carbon targets." This study develops a regional multi-energy generation simulation model, which is based on the core algorithm of generation dispatching approach. The established model can simulate the dispatching of all types of generating units in the region and output the data of power generation and emissions. Considering taking Shanxi Province as example, the output results under the benchmark scenario are obtained to verify the efficiency of the model. The error of renewable energy generation and other generation is less than 4%, which shows that the model has enough credibility. The results of the scenario analysis show that every 5% increase in the utilization rate of wind turbine units will increase almost 20% of the renewable energy power generation, reduce almost 15% of the thermal power and reduce at least 10% of the CO2 emissions. This proves that China's regional power generation industry has certain emission reduction potential. The proposed model has important application value for energy conservation and emission reduction of regional power generation industry.

Suggested Citation

  • Dongfang Ren & Xiaopeng Guo, 2023. "Simulation modeling and analysis of carbon emission reduction potential of multi-energy generation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11823-11845, October.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:10:d:10.1007_s10668-022-02556-4
    DOI: 10.1007/s10668-022-02556-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02556-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02556-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    2. Muhammad Shahzad Nazir & Yeqin Wang & Muhammad Bilal & Hafiz M. Sohail & Athraa Ali Kadhem & H. M. Rashid Nazir & Ahmed N. Abdalla & Yongheng Ma, 2020. "Comparison of Small-Scale Wind Energy Conversion Systems: Economic Indexes," Clean Technol., MDPI, vol. 2(2), pages 1-12, April.
    3. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    3. Hong, Zitao & Peng, Zhen & Zhang, Liumei, 2022. "Game analysis on the choice of emission trading among industrial enterprises driven by data," Energy, Elsevier, vol. 239(PE).
    4. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    5. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    6. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    7. Łukasz Augustowski & Piotr Kułyk, 2024. "Conditions for the Development of Wind Energy for Individual Consumers: A Case Study in Poland," Energies, MDPI, vol. 17(14), pages 1-13, July.
    8. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    9. Yu, Xiang, 2023. "An assessment of the green development efficiency of industrial parks in China: Based on non-desired output and non-radial DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 81-88.
    10. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    13. Wang, Hao-ran & Feng, Tian-tian & Zhong, Cheng, 2023. "Effectiveness of CO2 cost pass-through to electricity prices under “electricity-carbon” market coupling in China," Energy, Elsevier, vol. 266(C).
    14. Yue Han & Xiaosan Ge, 2023. "Spatial–Temporal Characteristics and Influencing Factors on Carbon Emissions from Land Use in Suzhou, the World’s Largest Industrial City in China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    15. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    16. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    17. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    18. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    19. Wang, Runchen & Du, Xiaonan & Shi, Yuetao & Deng, Weipeng & Wang, Yuhao & Sun, Fengzhong, 2024. "A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability," Energy, Elsevier, vol. 295(C).
    20. Du, Dajun & Zhu, Minggao & Wu, Dakui & Li, Xue & Fei, Minrui & Hu, Yukun & Li, Kang, 2024. "Distributed security state estimation-based carbon emissions and economic cost analysis for cyber–physical power systems under hybrid attacks," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:10:d:10.1007_s10668-022-02556-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.