IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i9d10.1007_s10668-021-01891-2.html
   My bibliography  Save this article

Environmental energy security in the MENA region – an aggregated composite index

Author

Listed:
  • Mohammed Chentouf

    (Ancienne Route de l’Aéroport)

  • Mohamed Allouch

    (Ancienne Route de l’Aéroport)

Abstract

Energy security is a multi-dimensional concept that is gaining a growing interest worldwide for studying the sustainability of a given energy sector. The level of energy security has been always quantified and evaluated by focusing on economic and technical dimensions, and modest importance was attributed to social and environmental aspects. Moreover, countries of the Middle East and North Africa (MENA) region were always under-reported in the literature pertaining to energy security issues. This study strives to evaluate energy security in this region through the establishment of an original Environmental Energy Security Index (EESI) in order to cover different dimensions of security of energy supply within these counties. A total of nine sub-indicators were selected based on the current policies and orientations in the region. These indicators were normalized, weighted, and aggregated for each country of the MENA region between 2008 and 2017. According to the assessment objectives, results showed that on average Yemen holds the highest EESI score of 5.319 followed by Morocco 4.304 and Algeria 4.087. On the other hands, Bahrain is ranked last 1.610 preceded by UAE 2.249 and Qatar 2.461. Some key proposals were suggested including investment in local resources, diversification of the energy mix, reduction of energy imports, and use of energy-efficient technologies.

Suggested Citation

  • Mohammed Chentouf & Mohamed Allouch, 2022. "Environmental energy security in the MENA region – an aggregated composite index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10945-10974, September.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:9:d:10.1007_s10668-021-01891-2
    DOI: 10.1007/s10668-021-01891-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01891-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01891-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    2. Bellakhal, Rihab & Ben Kheder, Sonia & Haffoudhi, Houda, 2019. "Governance and renewable energy investment in MENA countries:How does trade matter?," Energy Economics, Elsevier, vol. 84(C).
    3. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    4. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    5. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    6. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    7. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    8. Goel, Rajeev K. & Morey, Mathew J., 1993. "Effect of the 1973 oil price embargo : A non-parametric analysis," Energy Economics, Elsevier, vol. 15(1), pages 39-48, January.
    9. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    10. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    11. Byomkesh Talukder & Keith W. Hipel & Gary W. vanLoon, 2017. "Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques," Resources, MDPI, vol. 6(4), pages 1-27, November.
    12. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Estevão, João & Lopes, José Dias, 2024. "SDG7 and renewable energy consumption: The influence of energy sources," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Ayoub El Baraka & Redouane En-nadir & Mohamed A. Basyooni-M. Kabatas & Anouar Jorio & Asmae Khaldoun, 2024. "Soiling, Adhesion, and Surface Characterization of Concentrated Solar Power Reflectors: Insights and Challenges in the MENA Region," Sustainability, MDPI, vol. 16(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    2. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Pečiulytė, Sigita & Žutautaitė, Inga, 2017. "Integrated energy security assessment," Energy, Elsevier, vol. 138(C), pages 890-901.
    3. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).
    4. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    5. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    6. Coutinho, Gabriel Leuzinger & Vianna, João Nildo & Dias, Maria Amélia, 2020. "Alternatives for improving energy security in Cape Verde," Utilities Policy, Elsevier, vol. 67(C).
    7. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    8. García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
    9. Stempien, J.P. & Chan, S.H., 2017. "Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory," Applied Energy, Elsevier, vol. 202(C), pages 228-237.
    10. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    11. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens, 2023. "The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    12. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    13. Böhringer, Christoph & Bortolamedi, Markus, 2015. "Sense and no(n)-sense of energy security indicators," Ecological Economics, Elsevier, vol. 119(C), pages 359-371.
    14. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    15. Li, Yingzhu & Shi, Xunpeng & Yao, Lixia, 2016. "Evaluating energy security of resource-poor economies: A modified principle component analysis approach," Energy Economics, Elsevier, vol. 58(C), pages 211-221.
    16. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    17. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    18. Li, Jinchao & Wang, Lina & Lin, Xiaoshan & Qu, Shen, 2020. "Analysis of China’s energy security evaluation system: Based on the energy security data from 30 provinces from 2010 to 2016," Energy, Elsevier, vol. 198(C).
    19. Alipour, Mohammad & Hafezi, Reza & Ervural, Bilal & Kaviani, Mohamad Amin & Kabak, Özgür, 2018. "Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security," Energy, Elsevier, vol. 157(C), pages 914-931.
    20. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:9:d:10.1007_s10668-021-01891-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.