IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i5d10.1007_s10668-021-01753-x.html
   My bibliography  Save this article

Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production

Author

Listed:
  • Marlen Trejo

    (Maejo University
    Maejo University)

  • Prakash Bhuyar

    (Maejo University
    Maejo University)

  • Yuwalee Unpaprom

    (Maejo University
    Maejo University)

  • Natthawud Dussadee

    (Maejo University)

  • Rameshprabu Ramaraj

    (Maejo University
    Maejo University)

Abstract

Bioethanol is considered one of the most promising next-generation automotive fuels, as it is carbon neutral and can be produced from renewable resources, like lignocellulosic materials. The present research investigation aimed to utilize the elephant ear plant, a hazardous plant (weed) also considered an invasive species, as a font of non-edible lignocellulosic biomass for bioethanol production. The freshly collected elephant ear plant (leaves and stalk) was chopped into small pieces (1–2 cm) and then homogenized to a paste using a mechanical grinder. The sample pretreatment was done by flying ash for three different time durations (T1 = 0 min, T2 = 15 min, and T3 = 30 min) with 3 replications. All treatment samples were measured for total sugar and reducing sugar content. The concentration of reducing sugar archived was T1 = 0.771 ± 0.1 mg/mL, T2 = 0.907 ± 0.032 mg/mL, and T3 = 0.895 ± 0.039 mg/mL, respectively. The results revealed that the chemical composition was different among treatments. The hydrolysis was performed using cellulase enzymes at 35 °C for the hydrolysis process. The hydrolysate was inoculated with 1% of S. cerevisiae and maintained at room temperature without oxygen for 120 h. Bioethanol concentration was measured by using an ebulliometer. The efficient ethanol percentage was 1.052 ± 0.03 mg/mL achieved after the fermentation. Therefore, the elephant ear plant invasive weed could be an efficient feedstock plant for future bioethanol production.

Suggested Citation

  • Marlen Trejo & Prakash Bhuyar & Yuwalee Unpaprom & Natthawud Dussadee & Rameshprabu Ramaraj, 2022. "Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7377-7387, May.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01753-x
    DOI: 10.1007/s10668-021-01753-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01753-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01753-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cruz, Mariana & Pinho, Sílvia Cardinal & Mota, Ricardo & Almeida, Manuel Fonseca & Dias, Joana Maia, 2018. "Enzymatic esterification of acid oil from soapstocks obtained in vegetable oil refining: Effect of enzyme concentration," Renewable Energy, Elsevier, vol. 124(C), pages 165-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    2. Costa, E. & Almeida, M.F. & Alvim-Ferraz, C. & Dias, J.M., 2021. "Otimization of Crambe abyssinica enzymatic transesterification using response surface methodology," Renewable Energy, Elsevier, vol. 174(C), pages 444-452.
    3. Muanruksa, Papasanee & Kaewkannetra, Pakawadee, 2020. "Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate," Renewable Energy, Elsevier, vol. 146(C), pages 901-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01753-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.