IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i11d10.1007_s10668-021-01980-2.html
   My bibliography  Save this article

Introducing a process to select the appropriate dam compensation option based on ecosystem services

Author

Listed:
  • Hossein Safaei

    (Kimiagaran Khaksamen Consulting Engineers Company)

  • Mohadeseh Ghanbari Motlagh

    (Kimiagaran Khaksamen Consulting Engineers Company)

  • Mahmoudreza Khorshidian

    (Kimiagaran Khaksamen Consulting Engineers Company)

  • Saeed Malmasi

    (Islamic Azad University)

Abstract

Today, the environmental damages of dams are enormous and undeniable, and it is very difficult to reduce these losses. However, environmental damages from dam construction projects may be reduced in intensity and scope through remedial proceedings in the realm of engineering and management operations. The aim of this study was to provide a framework for reducing the destructive effects of dam construction in Western Iran in the heart of the Oak forests of the Zagros. To explore policymaking options and provide technical solutions to reduce damages from the dams and restoration the forests in the region, the scenario examination approach was used in a dynamic model due to the complexity of human–forest relationship interaction and the presence of many actors in this realm. The dynamic model prepared by variations of forest growth over time and the evaluation of the value of forest ecosystem services made it possible to implement predefined scenarios in forest management. Four different scenarios were designed to develop policies for reducing damages caused by the dam construction. Finally, the appropriate scenario (S4) is one in which conservation, restoration and reduction in pressure on forest resources in the region is proposed as the final solution to reduce the damages to forest resources caused by dam construction and restoration of vegetation. Also, the afforestation in the area is not a suitable option for remediation of vegetation.

Suggested Citation

  • Hossein Safaei & Mohadeseh Ghanbari Motlagh & Mahmoudreza Khorshidian & Saeed Malmasi, 2022. "Introducing a process to select the appropriate dam compensation option based on ecosystem services," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13011-13034, November.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-01980-2
    DOI: 10.1007/s10668-021-01980-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01980-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01980-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solange Filoso & Maíra Ometto Bezerra & Katherine C B Weiss & Margaret A Palmer, 2017. "Impacts of forest restoration on water yield: A systematic review," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-26, August.
    2. Ninan, K.N. & Inoue, Makoto, 2013. "Valuing forest ecosystem services: Case study of a forest reserve in Japan," Ecosystem Services, Elsevier, vol. 5(C), pages 78-87.
    3. Amirnejad, Hamid & Khalilian, Sadegh & Assareh, Mohammad H. & Ahmadian, Majid, 2006. "Estimating the existence value of north forests of Iran by using a contingent valuation method," Ecological Economics, Elsevier, vol. 58(4), pages 665-675, July.
    4. Xiankun Yang & Xixi Lu & Lishan Ran & Paolo Tarolli, 2019. "Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    5. Laura Schmitt Olabisi, 2010. "The System Dynamics of Forest Cover in the Developing World: Researcher Versus Community Perspectives," Sustainability, MDPI, vol. 2(6), pages 1-13, June.
    6. Johansen, Iver, 2018. "Scenario modelling with morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 116-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komeil JAHANIFAR & Hamid AMIRNEJAD & Zahra ABEDI & Alireza VAFAEINEJAD, 2017. "Estimation of the value of forest ecosystem services to develop conservational strategy management (strengths, weaknesses, opportunities and threats)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(7), pages 300-312.
    2. Massimo Florio & Francesco Giffoni & Gelsomina Catalano, 2020. "Should governments fund basic science? Evidence from a willingness-to-pay experiment in five universities," Journal of Economic Policy Reform, Taylor and Francis Journals, vol. 23(1), pages 16-33, January.
    3. Delgado, Luisa E. & Marín, Víctor H., 2020. "Ecosystem services and ecosystem degradation: Environmentalist’s expectation?," Ecosystem Services, Elsevier, vol. 45(C).
    4. Nicholas A. Kirk & Nicholas A. Cradock-Henry, 2022. "Land Management Change as Adaptation to Climate and Other Stressors: A Systematic Review of Decision Contexts Using Values-Rules-Knowledge," Land, MDPI, vol. 11(6), pages 1-23, May.
    5. Barano Siswa Sulistyawan & Budy P. Resosudarmo & Rene W. Verburg & Pita Verweij & Mia Amalia & Marija Bockarjova, 2022. "Economic valuation of water services related to protected forest management: a case of Bukit Batabuh in the RIMBA corridor, Central Sumatra, Indonesia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9330-9354, July.
    6. Culot, Giovanna & Battistella, Cinzia, 2024. "Future ecosystem business model tool: Design science and field test in the efuel ecosystem towards the sustainability transition," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    7. Jaina, Avinash & Chandrab, Girish & Nautiyalb, Raman, 2017. "Valuating intangible benefits from afforested areas: A case study in India," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(01), June.
    8. Laura Schmitt Olabisi & Saweda Liverpool-Tasie & Louie Rivers & Arika Ligmann-Zielinska & Jing Du & Riva Denny & Sandra Marquart-Pyatt & Amadou Sidibé, 2018. "Using participatory modeling processes to identify sources of climate risk in West Africa," Environment Systems and Decisions, Springer, vol. 38(1), pages 23-32, March.
    9. Panula-Ontto, Juha, 2019. "The AXIOM approach for probabilistic and causal modeling with expert elicited inputs," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 292-308.
    10. Gilsonley Lopes Santos & Marcos Gervasio Pereira & Rafael Coll Delgado & José Luiz Rodrigues Torres & Matheus Duarte Silva Cravo & Antônio Carlos Barreto & Iris Cristiane Magistrali, 2020. "Evaluation of natural regeneration and recovery of environmental services in a watershed in the Cerrado-Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5571-5583, August.
    11. Zhao, Xiaobing & Du, Ding & Xiong, Jun & Springer, Abraham & Masek Lopez, Sharon R. & Winkler, Blake & Hubler, Kenedy, 2019. "The impact of forest restoration on agriculture in the Verde River watershed, Arizona, USA," Forest Policy and Economics, Elsevier, vol. 109(C).
    12. Jette Jacobsen & Nick Hanley, 2009. "Are There Income Effects on Global Willingness to Pay for Biodiversity Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 137-160, June.
    13. Adam P. Hejnowicz & Murray A. Rudd, 2017. "The Value Landscape in Ecosystem Services: Value, Value Wherefore Art Thou Value?," Sustainability, MDPI, vol. 9(5), pages 1-34, May.
    14. A. Asciuto & V. Borsellino & M. D'Acquisto & C.P. Di Franco & M. Di Gesaro & E. Schimmenti, 2015. "Monumental trees and their existence value: the case study of an Italian natural park," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(2), pages 55-61.
    15. Benjamin A. Jones & John Fleck, 2018. "Urban Trees and Water Use in Arid Climates: Insights from an Integrated Bioeconomic-Health Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-38, October.
    16. Saengsupavanich, Cherdvong & Seenprachawong, Udomsak & Gallardo, Wenresti G. & Shivakoti, Ganesh P., 2008. "Port-induced erosion prediction and valuation of a local recreational beach," Ecological Economics, Elsevier, vol. 67(1), pages 93-103, August.
    17. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).
    18. Tuan, Tran Hu & Lindhjem, Henrik, 2008. "Meta-analysis of nature conservation values in Asia & Oceania: Data heterogeneity and benefit transfer issues," MPRA Paper 11470, University Library of Munich, Germany.
    19. West, Thales A.P. & Monge, Juan J. & Dowling, Les J. & Wakelin, Steve J. & Gibbs, Holly K., 2020. "Promotion of afforestation in New Zealand’s marginal agricultural lands through payments for environmental services," Ecosystem Services, Elsevier, vol. 46(C).
    20. Xiaowen Ding & Ping Fang, 2019. "Accident Trend Prediction of Heavy Metal Pollution in the Heshangshan Drinking Water Source Area Based on Integrating a Two-Dimensional Water Quality Model and GIS," Sustainability, MDPI, vol. 11(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-01980-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.