IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00841-8.html
   My bibliography  Save this article

Assessment and prediction of surface ozone in Northwest Indo-Gangetic Plains using ensemble approach

Author

Listed:
  • Madhvi Rana

    (Thapar University)

  • Susheel K. Mittal

    (Thapar University)

  • Gufran Beig

    (Indian Institute of Tropical Meteorology)

Abstract

The earth’s surface ozone levels are becoming very significant due to their negative impact on human health, vegetation and climate. In this study, the methodology based on ensemble approach embodied linear and nonlinear behaviors was developed. It was applied for prediction of ozone concentration using dataset (2013–2016) of gaseous pollutants (O3, CO, NOx, MHC, TNMHCs) and meteorological variables as input variables. The daily O3 max/O3 min ratio of 10.9 marks the peculiar ozone pollution in the area. The fourteen prediction algorithms and their possible combinations of ensemble models were employed in this paper. Compared with individual models, the ensemble model approach showed an index of agreement of 0.91, the accuracy of 95.5% and mean absolute error of − 0.001 ppb between the predicted and observed diurnal cycle and daily averaged data of the year 2016 for benchmark analysis.

Suggested Citation

  • Madhvi Rana & Susheel K. Mittal & Gufran Beig, 2021. "Assessment and prediction of surface ozone in Northwest Indo-Gangetic Plains using ensemble approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5715-5738, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00841-8
    DOI: 10.1007/s10668-020-00841-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00841-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00841-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    2. Hassanzadeh, S. & Hosseinibalam, F. & Omidvari, M., 2008. "Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2317-2327.
    3. Durai Sundaramoorthi, 2014. "A data-integrated simulation model to forecast ground-level ozone concentration," Annals of Operations Research, Springer, vol. 216(1), pages 53-69, May.
    4. O. R. Cooper & D. D. Parrish & A. Stohl & M. Trainer & P. Nédélec & V. Thouret & J. P. Cammas & S. J. Oltmans & B. J. Johnson & D. Tarasick & T. Leblanc & I. S. McDermid & D. Jaffe & R. Gao & J. Stith, 2010. "Increasing springtime ozone mixing ratios in the free troposphere over western North America," Nature, Nature, vol. 463(7279), pages 344-348, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhineng Hu & Jing Ma & Liangwei Yang & Xiaoping Li & Meng Pang, 2019. "Decomposition-Based Dynamic Adaptive Combination Forecasting for Monthly Electricity Demand," Sustainability, MDPI, vol. 11(5), pages 1-25, February.
    2. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    3. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    4. JS Armstrong & Fred Collopy, 2004. "Causal Forces: Structuring Knowledge for Time-series Extrapolation," General Economics and Teaching 0412003, University Library of Munich, Germany.
    5. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    6. Fiordaliso, Antonio, 1998. "A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems," International Journal of Forecasting, Elsevier, vol. 14(3), pages 367-379, September.
    7. Tri Le & Bertrand Clarke, 2018. "On the Interpretation of Ensemble Classifiers in Terms of Bayes Classifiers," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 198-229, July.
    8. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    9. Durai Sundaramoorthi & Lingxiu Dong, 2024. "Machine learning and optimization based decision-support tool for seed variety selection," Annals of Operations Research, Springer, vol. 341(1), pages 5-39, October.
    10. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    11. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    12. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    13. Alvarez, Luis J. & Delrieu, Juan C. & Jareño, Javier, 1997. "Restricted forecasts and economic target monitoring: An application to the Spanish Consumer Price Index," Journal of Policy Modeling, Elsevier, vol. 19(3), pages 333-349, June.
    14. Pablo Pincheira B. & Nicolás Fernández, 2011. "Jaque Mate a las Proyecciones de Consenso," Working Papers Central Bank of Chile 630, Central Bank of Chile.
    15. Fifić, Mario & Gigerenzer, Gerd, 2014. "Are two interviewers better than one?," Journal of Business Research, Elsevier, vol. 67(8), pages 1771-1779.
    16. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    17. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    18. Stefan Palan & Jürgen Huber & Larissa Senninger, 2020. "Aggregation mechanisms for crowd predictions," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 788-814, September.
    19. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    20. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00841-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.