IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00763-5.html
   My bibliography  Save this article

Testing the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga Province, South Africa

Author

Listed:
  • Isidore Muleba

    (University of Johannesburg)

  • Kowiyou Yessoufou

    (University of Johannesburg)

  • Isaac T. Rampedi

    (University of Johannesburg)

Abstract

Medicinal plants have been used by local communities to treat all sorts of diseases, and this unique indigenous knowledge has been documented in various studies. However, using this vast knowledge to formulate and test hypothesis in ethnobotany is not yet a common practice in the discipline despite recent calls for more hypothesis-driven ethnobotanical researches. Here, we collected ethnobotanical data on 811 woody plant species in the Mpumalanga Province of South Africa to test the non-random hypothesis of medicinal plant selection, which predicts a positive correlation between the size of plant families and the number of medicinal plants in the families. We tested this hypothesis by fitting the commonly used simple linear regression model and the negative binomial model. Our analysis confirmed the hypothesis and revealed that some plant families are over-utilised—i.e. contain more medicinal plants than expected. The identification of over-utilised families is the first step towards the prioritisation of research efforts for drug discovery. The proportion of over-utilised families ranges from 50% (linear regression with untransformed data) and 55% (linear regression after log–log transformation) to 34% (negative binomial model). With the simple linear model and untransformed data, the top over-utilised families are Fabaceae (residual = + 34.44), Apocynaceae (+ 5.82) and Phyllanthaceae (+ 5.53). The log-transformed model confirms these three families as the top over-utilised families but in a slightly different sequence: Fabaceae (+ 1.55), Phyllanthaceae (+ 0.83) and Apocynaceae (+ 0.79). However, using the negative binomial model, Fabaceae is no longer even part of the top 10 over-utilised families, which are now Phyllanthaceae (+ 2.09), Apocynaceae (+ 1.51), Loganiaceae (+ 1.48), Rhamnaceae (+ 1.48), Sapotaceae (+ 1.48), Oleaceae (+ 1.39), Salicaceae (+ 1.39), Clusiaceae (+ 1.30), Boraginaceae (+ 1.28) and Lamiaceae (+ 1.18). This suggests that the relative medicinal value of some families may have been over-estimated in comparison with others. Our study is an illustration of the need to apply appropriate model while testing ethnobotanical hypotheses to inform priority setting for drug discovery.

Suggested Citation

  • Isidore Muleba & Kowiyou Yessoufou & Isaac T. Rampedi, 2021. "Testing the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga Province, South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4162-4173, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00763-5
    DOI: 10.1007/s10668-020-00763-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00763-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00763-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Totterman, Stephen, 2021. "Vehicle-based recreation and compliance for three beaches in northern New South Wales," OSF Preprints ja8h6, Center for Open Science.
    2. Atin Adhikari & Jingjing Yin, 2020. "Short-Term Effects of Ambient Ozone, PM 2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    3. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    4. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    5. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    6. Itsuro Koizumi & Ichiro K. Shimatani, 2016. "Socially induced reproductive synchrony in a salmonid: an approximate Bayesian computation approach," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(5), pages 1386-1396.
    7. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    8. Liu, Hai & Chan, Kung-Sik, 2010. "Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i11).
    9. Sewando, Ponsian T. & Mdoe, N. Y. S. & Mutabazi, K. D. S, 2011. "Farmers’ preferential choice decisions to alternative cassava value chain strands in Morogoro rural district, Tanzania," MPRA Paper 29797, University Library of Munich, Germany.
    10. Samir Martins & Elton Silva & Elena Abella & Nuno Santos Loureiro & Adolfo Marco, 2020. "Warmer incubation temperature influences sea turtle survival and nullifies the benefit of a female-biased sex ratio," Climatic Change, Springer, vol. 163(2), pages 689-704, November.
    11. Merl, Robert & Palan, Stefan & Schmidt, Dominik & Stöckl, Thomas, 2023. "Insider trading regulation and trader migration," Journal of Financial Markets, Elsevier, vol. 66(C).
    12. Thorsten Simon & Georg J. Mayr & Nikolaus Umlauf & Achim Zeileis, 2018. "Lightning Prediction Using Model Output Statistics," Working Papers 2018-14, Faculty of Economics and Statistics, Universität Innsbruck.
    13. Matthew Wilson & Sandi Lane & Raghuveer Mohan & Margaret Sugg, 2020. "Internal and external validation of vulnerability indices: a case study of the Multivariate Nursing Home Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1013-1036, February.
    14. Sean J. Blamires & Cheng-Hui Lai & Ren-Chung Cheng & Chen-Pan Liao & Pao-Sheng Shen & I-Min Tso, 2012. "Body spot coloration of a nocturnal sit-and-wait predator visually lures prey," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(1), pages 69-74.
    15. Cyrine Ben-Hafaïedh & Alessandra Micozzi & Pierpaolo Pattitoni, 2018. "Academic spin-offs’ entrepreneurial teams and performance: a subgroups approach," The Journal of Technology Transfer, Springer, vol. 43(3), pages 714-733, June.
    16. Ruben Cordera & Pierluigi Coppola & Luigi dell’Olio & Ángel Ibeas, 2017. "Is accessibility relevant in trip generation? Modelling the interaction between trip generation and accessibility taking into account spatial effects," Transportation, Springer, vol. 44(6), pages 1577-1603, November.
    17. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    18. Erich Striessnig & Elke Loichinger, 2015. "Future differential vulnerability to natural disasters by level of education," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 221-240.
    19. A.-M. Esnard & B. S. Lai & C. Wyczalkowski & N. Malmin & H. J. Shah, 2018. "School vulnerability to disaster: examination of school closure, demographic, and exposure factors in Hurricane Ike’s wind swath," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 513-535, January.
    20. Liu, Chang & Bardaka, Eleni, 2023. "Transit-induced commercial gentrification: Causal inference through a difference-in-differences analysis of business microdata," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00763-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.