IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00763-5.html
   My bibliography  Save this article

Testing the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga Province, South Africa

Author

Listed:
  • Isidore Muleba

    (University of Johannesburg)

  • Kowiyou Yessoufou

    (University of Johannesburg)

  • Isaac T. Rampedi

    (University of Johannesburg)

Abstract

Medicinal plants have been used by local communities to treat all sorts of diseases, and this unique indigenous knowledge has been documented in various studies. However, using this vast knowledge to formulate and test hypothesis in ethnobotany is not yet a common practice in the discipline despite recent calls for more hypothesis-driven ethnobotanical researches. Here, we collected ethnobotanical data on 811 woody plant species in the Mpumalanga Province of South Africa to test the non-random hypothesis of medicinal plant selection, which predicts a positive correlation between the size of plant families and the number of medicinal plants in the families. We tested this hypothesis by fitting the commonly used simple linear regression model and the negative binomial model. Our analysis confirmed the hypothesis and revealed that some plant families are over-utilised—i.e. contain more medicinal plants than expected. The identification of over-utilised families is the first step towards the prioritisation of research efforts for drug discovery. The proportion of over-utilised families ranges from 50% (linear regression with untransformed data) and 55% (linear regression after log–log transformation) to 34% (negative binomial model). With the simple linear model and untransformed data, the top over-utilised families are Fabaceae (residual = + 34.44), Apocynaceae (+ 5.82) and Phyllanthaceae (+ 5.53). The log-transformed model confirms these three families as the top over-utilised families but in a slightly different sequence: Fabaceae (+ 1.55), Phyllanthaceae (+ 0.83) and Apocynaceae (+ 0.79). However, using the negative binomial model, Fabaceae is no longer even part of the top 10 over-utilised families, which are now Phyllanthaceae (+ 2.09), Apocynaceae (+ 1.51), Loganiaceae (+ 1.48), Rhamnaceae (+ 1.48), Sapotaceae (+ 1.48), Oleaceae (+ 1.39), Salicaceae (+ 1.39), Clusiaceae (+ 1.30), Boraginaceae (+ 1.28) and Lamiaceae (+ 1.18). This suggests that the relative medicinal value of some families may have been over-estimated in comparison with others. Our study is an illustration of the need to apply appropriate model while testing ethnobotanical hypotheses to inform priority setting for drug discovery.

Suggested Citation

  • Isidore Muleba & Kowiyou Yessoufou & Isaac T. Rampedi, 2021. "Testing the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga Province, South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4162-4173, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00763-5
    DOI: 10.1007/s10668-020-00763-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00763-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00763-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Totterman, Stephen, 2021. "Vehicle-based recreation and compliance for three beaches in northern New South Wales," OSF Preprints ja8h6, Center for Open Science.
    2. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    3. Sewando, Ponsian T. & Mdoe, N. Y. S. & Mutabazi, K. D. S, 2011. "Farmers’ preferential choice decisions to alternative cassava value chain strands in Morogoro rural district, Tanzania," MPRA Paper 29797, University Library of Munich, Germany.
    4. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    5. Ina Falfán & Luis Zambrano, 2023. "Lacustrine Urban Blue Spaces: Low Availability and Inequitable Distribution in the Most Populated Cities in Mexico," Land, MDPI, vol. 12(1), pages 1-18, January.
    6. Guarino, Ernestino de Souza Gomes & Barbosa, Ana Márcia & Waechter, Jorge Luiz, 2012. "Occurrence and abundance models of threatened plant species: Applications to mitigate the impact of hydroelectric power dams," Ecological Modelling, Elsevier, vol. 230(C), pages 22-33.
    7. Evgenii V. Gilenko & Elena A. Mironova, 2017. "Modern claim frequency and claim severity models: An application to the Russian motor own damage insurance market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1311097-131, January.
    8. Andre Jungmittag, 2019. "Service trade restrictiveness and internationalisation of retail trade," International Economics and Economic Policy, Springer, vol. 16(2), pages 293-333, April.
    9. Bonnini, S. & Borghesi, M. & Giacalone, M., 2024. "Semi-parametric approach for modelling overdispersed count data with application to Industry 4.0," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    10. Erni, Birgit & Bonnevie, Bo T. & Oschadleus, Hans-Dieter & Altwegg, Res & Underhill, Les G., 2013. "moult: An R Package to Analyze Moult in Birds," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i08).
    11. Zeileis, Achim & Koenker, Roger, 2008. "Econometrics in R: Past, Present, and Future," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i01).
    12. Christian Balcells, 2022. "Determinants of firm boundaries and organizational performance: an empirical investigation of the Chilean truck market," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 423-461, April.
    13. Lindsay P Campbell & Daniel C Reuman & Joel Lutomiah & A Townsend Peterson & Kenneth J Linthicum & Seth C Britch & Assaf Anyamba & Rosemary Sang, 2019. "Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-19, December.
    14. Moritz Berger & Gerhard Tutz, 2021. "Transition models for count data: a flexible alternative to fixed distribution models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1259-1283, October.
    15. Malhado, Ana C.M. & Santos, Janisson & Correia, Ricardo A. & Campos-Silva, João V. & Teles, Davi & Costa, Marcos H. & Jepson, Paul & Ladle, Richard J., 2020. "Monitoring and mapping non-governmental conservation action in Amazonia," Land Use Policy, Elsevier, vol. 94(C).
    16. Filipe Sengo Furtado & Thomas Reutterer & Nadine Schröder, 2022. "The carrot and the stick in online reviews: determinants of un-/helpfulness voting choices," Journal of Business Economics, Springer, vol. 92(4), pages 565-590, May.
    17. Taro Kanatani & Kuninori Nakagawa, 2023. "Analysis of reporting lag in daily data of COVID-19 in Japan," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    18. Benedikt Preuß & Lasse Fischer & Annika Schmidt & Kathrin Seibert & Viktoria Hoel & Dominik Domhoff & Franziska Heinze & Werner Brannath & Karin Wolf-Ostermann & Heinz Rothgang, 2022. "COVID-19 in German Nursing Homes: The Impact of Facilities’ Structures on the Morbidity and Mortality of Residents—An Analysis of Two Cross-Sectional Surveys," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    19. Weko, Silvia & Goldthau, Andreas, 2022. "Bridging the low-carbon technology gap? Assessing energy initiatives for the Global South," Energy Policy, Elsevier, vol. 169(C).
    20. Taghouti, Ibtissem & Martinez-Gomez, Victor & Coque, José María Garcia Alvarez, 2015. "Exploring Eu Food Safety Notifications On Agro-Food Imports: Are Mediterranean Partner Countries Discriminated?," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(2), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00763-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.