An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals
Author
Abstract
Suggested Citation
DOI: 10.1007/s10668-021-01373-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghulam Mustafa & Rawaba Arif & Asia Atta & Sumaira Sharif & Amer Jamil, 2017. "Bioactive Compounds from Medicinal Plants and Their Importance in Drug Discovery in Pakistan," Matrix Science Pharma (MSP), Zibeline International Publishing, vol. 1(1), pages 17-26, February.
- Robert N. Kirchdoerfer & Andrew B. Ward, 2019. "Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Hafiza Salaha Mahrosh & Ghulam Mustafa, 2021. "The COVID-19 puzzle: a global nightmare," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12710-12737, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aijing Feng & Sarah Bevins & Jeff Chandler & Thomas J. DeLiberto & Ria Ghai & Kristina Lantz & Julianna Lenoch & Adam Retchless & Susan Shriner & Cynthia Y. Tang & Suxiang Sue Tong & Mia Torchetti & A, 2023. "Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Mohamed Fareh & Wei Zhao & Wenxin Hu & Joshua M. L. Casan & Amit Kumar & Jori Symons & Jennifer M. Zerbato & Danielle Fong & Ilia Voskoboinik & Paul G. Ekert & Rajeev Rudraraju & Damian F. J. Purcell , 2021. "Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Xuan Zou & Xiaohong Xiao & Ziran Mo & Yashi Ge & Xing Jiang & Ruolin Huang & Mengxue Li & Zixin Deng & Shi Chen & Lianrong Wang & Sang Yup Lee, 2022. "Systematic strategies for developing phage resistant Escherichia coli strains," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Hari Vishal Lakhani & Sneha S. Pillai & Mishghan Zehra & Ishita Sharma & Komal Sodhi, 2020. "Systematic Review of Clinical Insights into Novel Coronavirus (CoVID-19) Pandemic: Persisting Challenges in U.S. Rural Population," IJERPH, MDPI, vol. 17(12), pages 1-14, June.
More about this item
Keywords
SARS-CoV-2; Molecular docking; Phytochemicals; RNA-dependent RNA polymerase; Nsp-12;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01373-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.