IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i1d10.1007_s10668-018-0194-z.html
   My bibliography  Save this article

Techno-economic evaluation of anatase and p25 TiO2 for treatment basic yellow 28 dye solution through heterogeneous photocatalysis

Author

Listed:
  • Pankaj Chawla

    (Panjab University)

  • S. K. Sharma

    (Panjab University)

  • A. P. Toor

    (Panjab University)

Abstract

The photodegradation and mineralization efficiency (technical evaluation) and process economics (economic evaluation) are important in selection of a particular type of TiO2 for large-scale commercial applications involving heterogeneous photocatalysis. In this paper, techno-economic evaluation of indigenous anatase TiO2 (ana-TiO2) and aeroxide p25 TiO2 (p25-TiO2) photocatalyst for heterogeneous photocatalysis of basic yellow 28 (BY28) dye solution is studied. The characterization of photocatalysts was done through X-ray diffraction, Tauc’s plot, and point of zero charge. The important parameters related to heterogeneous photocatalytic process like photocatalyst loading, UV intensity, and A/V (area-to-volume) ratio were studied and optimized as per ability of photocatalyst for the full utilization of light illumination. BY28 dye degradation depicted pseudo-first-order kinetics under UV radiations and solar light. Electric energy per order and collector area per order was also evaluated for the two systems. Finally, economic evaluation of these two types of TiO2 was done in terms of total material and energy cost involved for 90% removal of BY28 dye from 1 m3 solution under UV radiations and solar light. Ana-TiO2 found to be more economical than p25-TiO2 in terms of operating cost involved for photocatalytic degradation of BY28 dye. Alternatively, photocatalytic unit using p25-TiO2 showed higher treatment capacity as compared to ana-TiO2 due to higher photodegradation and mineralization efficiency of the former. Finally, a method for selection of particular type of TiO2 (p25-TiO2 or ana-TiO2) for a photocatalytic unit is suggested by considering volumetric capacity of photocatlytic unit, volume of effluent generated per day by the dyeing unit, photodegradation efficiency of TiO2, and process economics. This study would be useful for the decision making authorities in profitable selection of particular type of TiO2 for treating given volume of effluent.

Suggested Citation

  • Pankaj Chawla & S. K. Sharma & A. P. Toor, 2020. "Techno-economic evaluation of anatase and p25 TiO2 for treatment basic yellow 28 dye solution through heterogeneous photocatalysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 231-249, January.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:1:d:10.1007_s10668-018-0194-z
    DOI: 10.1007/s10668-018-0194-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0194-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0194-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Bradha & Nagaraj Balakrishnan & A. Suvitha & T. Arumanayagam & M. Rekha & P. Vivek & P. Ajay & V. Sangeetha & Ananth Steephen, 2022. "Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8807-8822, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:1:d:10.1007_s10668-018-0194-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.