IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v18y2016i5d10.1007_s10668-016-9808-5.html
   My bibliography  Save this article

Conditions for the development of anaerobic digestion technologies using the organic fraction of municipal solid waste: perspectives for Poland

Author

Listed:
  • Anna Rolewicz-Kalińska

    (Warsaw University of Technology)

  • Anna Oniszk-Popławska

    (Warsaw University of Technology)

  • Judyta Wesołowska

    (Warsaw University of Technology)

  • Elżbieta D. Ryńska

    (Warsaw University of Technology)

Abstract

This article outlines problems related to the location of facilities designed to treat the organic fraction of municipal solid waste (OFMSW). Anaerobic digestion (AD) facilities are investigated as a treatment option, while taking into account the aspects of renewable energy generation. This research has been spurred on by the relationship between waste management, energy generation issues and spatial planning procedures. The analysis is focused on urban and semi-urban areas of medium and large cities. One of the most difficult issues associated with siting of waste processing plants is its integration with local infrastructures, avoiding conflicts and negative environmental impacts at the same time. This research aims to analyse possible locations for AD plants fuelled by OFMSW in Poland. Based on the experience gained from other countries and lessons learnt from the analysis of existing facilities in Europe, conditions for the location of this type of waste treatment plants have been defined, with the focus on economic, environmental and social issues. Most likely, the results of the multicriteria decision analysis for siting of municipal solid waste AD plants (M-BIST tool) could be transferred to other countries, especially those with a comparable GDP level and a similar framework for a waste management system.

Suggested Citation

  • Anna Rolewicz-Kalińska & Anna Oniszk-Popławska & Judyta Wesołowska & Elżbieta D. Ryńska, 2016. "Conditions for the development of anaerobic digestion technologies using the organic fraction of municipal solid waste: perspectives for Poland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1279-1296, October.
  • Handle: RePEc:spr:endesu:v:18:y:2016:i:5:d:10.1007_s10668-016-9808-5
    DOI: 10.1007/s10668-016-9808-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-016-9808-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-016-9808-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Ferretti & Silvia Pomarico, 2012. "Integrated sustainability assessments: a spatial multicriteria evaluation for siting a waste incinerator plant in the Province of Torino (Italy)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(5), pages 843-867, October.
    2. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    3. Münster, Marie & Meibom, Peter, 2011. "Optimization of use of waste in the future energy system," Energy, Elsevier, vol. 36(3), pages 1612-1622.
    4. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    5. Scarlat, N. & Motola, V. & Dallemand, J.F. & Monforti-Ferrario, F. & Mofor, Linus, 2015. "Evaluation of energy potential of Municipal Solid Waste from African urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1269-1286.
    6. Chodkowska-Miszczuk, Justyna & Szymańska, Daniela, 2011. "Update of the review: Cultivation of energy crops in Poland against socio-demographic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4242-4247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    2. Islam, K.M. Nazmul, 2018. "Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2472-2486.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    5. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    6. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    7. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    8. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    9. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    10. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    11. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    13. Johanes Widijantoro & Yuni Windarti, 2019. "Fostering Clean and Healthy Energy in Rural Communities: Lessons from the Indonesia Clean Stove Initiative Pilot Program," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 107-114.
    14. Mboumboue, Edouard & Njomo, Donatien, 2016. "Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon׳s case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 266-279.
    15. Annie Dimitrova & Atanas Pavlov, 2024. "Animal and Vegetal Waste Generated by EU Member States in the Period 2016 – 2020," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 241-256.
    16. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    17. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    18. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    19. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    20. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:18:y:2016:i:5:d:10.1007_s10668-016-9808-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.