IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v66y2024i2d10.1007_s00181-023-02477-9.html
   My bibliography  Save this article

Using household-level data to guide borrower-based macro-prudential policy

Author

Listed:
  • Gaston Giordana

    (Banque centrale du Luxembourg)

  • Michael Ziegelmeyer

    (Banque centrale du Luxembourg)

Abstract

Many countries introduced borrower-based instruments to constrain credit to households exceeding a limit on their loan-to-value ratio, their (mortgage) debt-to-income ratio or their debt service-to-income ratio. We evaluate how well borrower-based instruments can target households that would become vulnerable after a shock. We apply the signals approach to derive “optimal” limits that minimize classification errors (either granting credit to financially vulnerable households or constraining credit to households that are not vulnerable). To illustrate, we simulate an adverse scenario using household-level data from Luxembourg. We find that combining several ratios could better target households that would become vulnerable after a shock.

Suggested Citation

  • Gaston Giordana & Michael Ziegelmeyer, 2024. "Using household-level data to guide borrower-based macro-prudential policy," Empirical Economics, Springer, vol. 66(2), pages 785-827, February.
  • Handle: RePEc:spr:empeco:v:66:y:2024:i:2:d:10.1007_s00181-023-02477-9
    DOI: 10.1007/s00181-023-02477-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-023-02477-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-023-02477-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Lindner & Nicolás Albacete, 2017. "Simulating impacts of borrower based macroprudential policies on mortgages and the real estate sector in Austria – evidence from the Household Finance and Consumption Survey 2014," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data needs and Statistics compilation for macroprudential analysis, volume 46, Bank for International Settlements.
    2. Drehmann, Mathias & Juselius, Mikael, 2014. "Evaluating early warning indicators of banking crises: Satisfying policy requirements," International Journal of Forecasting, Elsevier, vol. 30(3), pages 759-780.
    3. Sara Ferreira Filipe, 2018. "Housing prices and mortgage credit in Luxembourg," BCL working papers 117, Central Bank of Luxembourg.
    4. Graciela Kaminsky & Saul Lizondo & Carmen M. Reinhart, 1998. "Leading Indicators of Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 1-48, March.
    5. Giordana, Gastón & Ziegelmeyer, Michael, 2020. "Stress testing household balance sheets in Luxembourg," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 115-138.
    6. Gross, Marco & Población, Javier, 2017. "Assessing the efficacy of borrower-based macroprudential policy using an integrated micro-macro model for European households," Economic Modelling, Elsevier, vol. 61(C), pages 510-528.
    7. Nicolas Albacete & Pirmin Fessler, 2010. "Stress Testing Austrian Households," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 19, pages 72-91.
    8. Ampudia, Miguel & van Vlokhoven, Has & Żochowski, Dawid, 2016. "Financial fragility of euro area households," Journal of Financial Stability, Elsevier, vol. 27(C), pages 250-262.
    9. Nicolas Albacete & Pirmin Fessler & Peter Lindner, 2018. "One policy to rule them all? On the effectiveness of LTV, DTI and DSTI ratio limits as macroprudential policy tools," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 35, pages 67-83.
    10. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    11. Nicolas Albacete & Peter Lindner, 2013. "Household Vulnerability in Austria – A Microeconomic Analysis Based on the Household Finance and Consumption Survey," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 25, pages 57-73.
    12. Mindaugas Leika & Daniela Marchettini, 2017. "A Generalized Framework for the Assessment of Household Financial Vulnerability," IMF Working Papers 2017/228, International Monetary Fund.
    13. Gaston Giordana & Michael Ziegelmeyer, 2017. "Household debt burden and financial vulnerability in Luxembourg," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data needs and Statistics compilation for macroprudential analysis, volume 46, Bank for International Settlements.
    14. Mr. Jiaqian Chen & Mr. Francesco Columba, 2016. "Macroprudential and Monetary Policy Interactions in a DSGE Model for Sweden," IMF Working Papers 2016/074, International Monetary Fund.
    15. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin, 2012. "How to Evaluate an Early-Warning System: Toward a Unified Statistical Framework for Assessing Financial Crises Forecasting Methods," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 60(1), pages 75-113, April.
    16. Detken, Carsten & Weeken, Olaf & Alessi, Lucia & Bonfim, Diana & Boucinha, Miguel & Castro, Christian & Frontczak, Sebastian & Giordana, Gaston & Giese, Julia & Wildmann, Nadya & Kakes, Jan & Klaus, B, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 5, European Systemic Risk Board.
    17. Anastasia Girshina & Thomas Y. Mathä & Michael Ziegelmeyer, 2017. "The Luxembourg Household Finance and Consumption Survey: Results from the 2nd wave," BCL working papers 106, Central Bank of Luxembourg.
    18. Makdissi, Paul & Wodon, Quentin, 2002. "Consumption dominance curves: testing for the impact of indirect tax reforms on poverty," Economics Letters, Elsevier, vol. 75(2), pages 227-235, April.
    19. Piotr Banbula & Arkadiusz Kotula & Joanna Gabriela Przeworska & Pawel Strzelecki, 2016. "Which households are really financially distressed: how micro data could inform the macroprudential policy," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Combining micro and macro data for financial stability analysis, volume 41, Bank for International Settlements.
    20. Eurosystem Household Finance and Consumption Network, 2013. "The Eurosystem Household Finance and Consumption Survey - Results from the first wave," Statistics Paper Series 2, European Central Bank.
    21. Òscar Jordà & Alan M. Taylor, 2011. "Performance Evaluation of Zero Net-Investment Strategies," NBER Working Papers 17150, National Bureau of Economic Research, Inc.
    22. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    23. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin, 2012. "How to evaluate an Early Warning System ?," Working Papers halshs-00450050, HAL.
    24. Carsten Detken & Olaf Weeken & Lucia Alessi & Diana Bonfim & Miguel M. Boucinha & Christian Castro & Sebastian Frontczak & Gaston Giordana & Julia Giese & Nadya Jahn & Jan Kakes & Benjamin Klaus & Jan, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 05, European Systemic Risk Board.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordana, Gastón & Ziegelmeyer, Michael, 2020. "Stress testing household balance sheets in Luxembourg," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 115-138.
    2. Buckmann, Marcus & Gallego Marquez, Paula & Gimpelewicz, Mariana & Kapadia, Sujit & Rismanchi, Katie, 2023. "The more the merrier? Evidence on the value of multiple requirements in bank regulation," Journal of Banking & Finance, Elsevier, vol. 149(C).
    3. Aleksandra Riedl, 2021. "Are CESEE borrowers at risk? COVID-19 implications in a stress test analysis," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/21, pages 37-53.
    4. Lang, Jan Hannes & Peltonen, Tuomas A. & Sarlin, Peter, 2018. "A framework for early-warning modeling with an application to banks," Working Paper Series 2182, European Central Bank.
    5. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    6. Dieckelmann, Daniel, 2020. "Cross-border lending and the international transmission of banking crises," Discussion Papers 2020/13, Free University Berlin, School of Business & Economics.
    7. Maria Siranova & Marek Radvanský, 2018. "Performance of the Macroeconomic Imbalance Procedure in light of historical experience in the CEE region," Journal of Economic Policy Reform, Taylor & Francis Journals, vol. 21(4), pages 335-352, October.
    8. Hosung Jung & Hyun Hak Kim, 2020. "Default Probability by Employment Status in South Korea," Asian Economic Papers, MIT Press, vol. 19(3), pages 62-84, Fall.
    9. Carsten Detken & Olaf Weeken & Lucia Alessi & Diana Bonfim & Miguel M. Boucinha & Christian Castro & Sebastian Frontczak & Gaston Giordana & Julia Giese & Nadya Jahn & Jan Kakes & Benjamin Klaus & Jan, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 05, European Systemic Risk Board.
    10. Nicolas Albacete & Pirmin Fessler & Peter Lindner, 2018. "One policy to rule them all? On the effectiveness of LTV, DTI and DSTI ratio limits as macroprudential policy tools," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 35, pages 67-83.
    11. Jorge E. Galán, 2021. "CREWS: a CAMELS-based early warning system of systemic risk in the banking sector," Occasional Papers 2132, Banco de España.
    12. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    13. Tihana Skrinjaric, 2023. "Leading indicators of financial stress in Croatia: a regime switching approach," Public Sector Economics, Institute of Public Finance, vol. 47(2), pages 205-232.
    14. Liaqat Ali & Muhammad Kamran Naqi Khan & Habib Ahmad, 2020. "Financial Fragility of Pakistani Household," Journal of Family and Economic Issues, Springer, vol. 41(3), pages 572-590, September.
    15. Nicolas Albacete & Pirmin Fessler & Maximilian Propst, 2020. "Mapping financial vulnerability in CESEE: understanding risk-bearing capacities of households is key in times of crisis," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 39, pages 71-87.
    16. Kirsten Abela & Ilias Georgakopoulus, 2022. "A stress testing framework for the Maltese household sector," CBM Working Papers WP/04/2022, Central Bank of Malta.
    17. Borio, Claudio & Drehmann, Mathias & Xia, Fan Dora, 2020. "Forecasting recessions: the importance of the financial cycle," Journal of Macroeconomics, Elsevier, vol. 66(C).
    18. François Koulischer & Pauline Perray & Thi Thu Huyen Tran, 2022. "COVID-19 and the Mortgage Market in Luxembourg," JRFM, MDPI, vol. 15(3), pages 1-24, March.
    19. V. Coudert & J. Idier, 2016. "An Early Warning System for Macro-prudential Policy in France," Working papers 609, Banque de France.
    20. Sarlin, Peter, 2013. "On policymakers’ loss functions and the evaluation of early warning systems," Economics Letters, Elsevier, vol. 119(1), pages 1-7.

    More about this item

    Keywords

    Household debt; Financial vulnerability; Macro-prudential policy; Borrower-based instruments; Luxembourg;
    All these keywords.

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • D14 - Microeconomics - - Household Behavior - - - Household Saving; Personal Finance
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:66:y:2024:i:2:d:10.1007_s00181-023-02477-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.