IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v64y2023i6d10.1007_s00181-022-02339-w.html
   My bibliography  Save this article

The noise error component in stochastic frontier analysis

Author

Listed:
  • Alecos Papadopoulos

    (Athens University of Economics and Business)

Abstract

With a little help from a handful of scholars, the noise component of the composed error in a production model created the stochastic frontier analysis field. But after that glorious moment, it was confined to obscurity. We review what little research has been done on it. We present two cases where it torments us from the shadows, by sabotaging identification, and by distorting the sample skewness. We examine the relation between predicted noise and predicted inefficiency. For the Normal-Half Normal and the Normal-Exponential error specification, we provide its conditional expectation as predictor and we examine its distribution in relation to the marginal law. We also derive the conditional distribution of the noise and we compute confidence intervals and the probability of over-predicting it. Finally, we present a model where the noise, as the carrier of uncertainty, induces directly inefficiency. We conclude by showcasing our theoretical results through an empirical illustration.

Suggested Citation

  • Alecos Papadopoulos, 2023. "The noise error component in stochastic frontier analysis," Empirical Economics, Springer, vol. 64(6), pages 2795-2829, June.
  • Handle: RePEc:spr:empeco:v:64:y:2023:i:6:d:10.1007_s00181-022-02339-w
    DOI: 10.1007/s00181-022-02339-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-022-02339-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-022-02339-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsionas, Mike G. & Assaf, A. George & Andrikopoulos, Athanasios, 2020. "Quantile stochastic frontier models with endogeneity," Economics Letters, Elsevier, vol. 188(C).
    2. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.
    3. Waldman, Donald M., 1984. "Properties of technical efficiency estimators in the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 25(3), pages 353-364, July.
    4. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2021. "A new family of copulas, with application to estimation of a production frontier system," Journal of Productivity Analysis, Springer, vol. 55(1), pages 1-14, February.
    5. Wang, Wei Siang & Schmidt, Peter, 2009. "On the distribution of estimated technical efficiency in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 148(1), pages 36-45, January.
    6. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-363, July.
    7. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    8. Schmidt, Peter, 1976. "On the Statistical Estimation of Parametric Frontier Production Functions," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 238-239, May.
    9. Fan, Yanqin, 1994. "Testing the Goodness of Fit of a Parametric Density Function by Kernel Method," Econometric Theory, Cambridge University Press, vol. 10(2), pages 316-356, June.
    10. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, January.
    11. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    12. Alexander D. Stead & Phill Wheat & William H. Greene, 2018. "Erratum to: Estimating Efficiency in the Presence of Extreme Outliers: A Logistic-Half Normal Stochastic Frontier Model with Application to Highway Maintenance Costs in England," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages E1-E1, Springer.
    13. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    14. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
    15. El Mehdi, Rachida & Hafner, Christian M., 2014. "Inference in stochastic frontier analysis with dependent error terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 104-116.
    16. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    17. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    18. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    19. Alecos Papadopoulos, 2015. "The half-normal specification for the two-tier stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 43(2), pages 225-230, April.
    20. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    21. Alecos Papadopoulos & Christopher F. Parmeter, 2022. "Quantile Methods for Stochastic Frontier Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(1), pages 1-120, November.
    22. Alexander D. Stead & Phill Wheat & William H. Greene, 2018. "Estimating Efficiency in the Presence of Extreme Outliers: A Logistic-Half Normal Stochastic Frontier Model with Application to Highway Maintenance Costs in England," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages 1-19, Springer.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alecos Papadopoulos & Christopher F. Parmeter, 2024. "The wrong skewness problem in stochastic frontier analysis: a review," Journal of Productivity Analysis, Springer, vol. 61(2), pages 121-134, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stead, Alexander D. & Wheat, Phill & Greene, William H., 2023. "Robust maximum likelihood estimation of stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 309(1), pages 188-201.
    2. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    3. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    4. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    5. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    6. Jradi, Samah & Parmeter, Christopher F. & Ruggiero, John, 2021. "Quantile estimation of stochastic frontiers with the normal-exponential specification," European Journal of Operational Research, Elsevier, vol. 295(2), pages 475-483.
    7. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    10. Shirong Zhao & Jeremy Losak, 2024. "Two-tiered stochastic frontier models: a Bayesian perspective," Journal of Productivity Analysis, Springer, vol. 61(2), pages 85-106, April.
    11. Parmeter, Christopher F., 2021. "Is it MOLS or COLS?," Efficiency Series Papers 2021/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    13. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    14. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    15. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    16. María Concepción Pérez-Cárceles & Juan Cándido Gómez-Gallego & Juan Gómez-García, 2016. "Distribution of cost inefficiency in stochastic frontier approach: evidence from Spanish banking," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3030-3041, December.
    17. Graziella Bonanno & Filippo Domma, 2022. "Analytical Derivations of New Specifications for Stochastic Frontiers with Applications," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    18. Christine Amsler & Michael Leonard & Peter Schmidt, 2013. "Estimation and inference in parametric deterministic frontier models," Journal of Productivity Analysis, Springer, vol. 40(3), pages 293-305, December.
    19. Kexin Li & Jianxu Liu & Yuting Xue & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Consequences of Ignoring Dependent Error Components and Heterogeneity in a Stochastic Frontier Model: An Application to Rice Producers in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    20. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.

    More about this item

    Keywords

    Noise; Stochastic frontier; Identification; Wrong skewness; Dependence;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:64:y:2023:i:6:d:10.1007_s00181-022-02339-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.