IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v21y2011i2d10.1007_s12525-011-0059-x.html
   My bibliography  Save this article

Product data quality in supply chains: the case of Beiersdorf

Author

Listed:
  • Kai M. Hüner

    (Institute of Information Management)

  • Andreas Schierning

    (Beiersdorf AG, Supply Chain Data Process Management)

  • Boris Otto

    (Institute of Information Management)

  • Hubert Österle

    (Institute of Information Management)

Abstract

A number of business requirements (e.g. compliance with regulatory and legal provisions, diffusion of global standards, supply chain integration) are forcing consumer goods manufacturers to increase their efforts to provide product data (e.g. product identifiers, dimensions) at business-to-business interfaces timely and accurately. The quality of such data is a critical success factor for efficient and effective cross-company collaboration. If compliance relevant data (e.g. dangerous goods indicators) is missing or false, consumer goods manufacturers risk being fined and see their company’s image damaged. Or if logistics data (e.g. product dimensions, gross weight) is inaccurate or provided not in time, business with key account trading partners is endangered. To be able to manage the risk of business critical data defects, companies must be able to a) identify such data defects, and b) specify and use metrics that allow to monitor the data’s quality. As scientific research on both these issues has come up with only few results so far, this case study explores the process of identifying business critical product data defects at German consumer goods manufacturing company Beiersdorf AG. Despite advanced data quality management structures such defects still occur and can result in complaints, service level impairment and avoidable costs. The case study analyzes product data use and maintenance in Beiersdorf’s ecosystem, identifies typical product data defects, and proposes a set of data quality metrics for monitoring those defects.

Suggested Citation

  • Kai M. Hüner & Andreas Schierning & Boris Otto & Hubert Österle, 2011. "Product data quality in supply chains: the case of Beiersdorf," Electronic Markets, Springer;IIM University of St. Gallen, vol. 21(2), pages 141-154, June.
  • Handle: RePEc:spr:elmark:v:21:y:2011:i:2:d:10.1007_s12525-011-0059-x
    DOI: 10.1007/s12525-011-0059-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-011-0059-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-011-0059-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Cohen Kulp & Hau L. Lee & Elie Ofek, 2004. "Manufacturer Benefits from Information Integration with Retail Customers," Management Science, INFORMS, vol. 50(4), pages 431-444, April.
    2. Andreas I. Nicolaou & D. Harrison McKnight, 2006. "Perceived Information Quality in Data Exchanges: Effects on Risk, Trust, and Intention to Use," Information Systems Research, INFORMS, vol. 17(4), pages 332-351, December.
    3. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    4. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    5. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yu & Lu, Louis Y.Y. & Liu, John S. & Zhou, Zhili, 2014. "Knowledge diffusion path analysis of data quality literature: A main path analysis," Journal of Informetrics, Elsevier, vol. 8(3), pages 594-605.
    2. Diana Božić & Margareta Živičnjak & Ratko Stanković & Andrej Ignjatić, 2024. "Impact of the Product Master Data Quality on the Logistics Process Performance," Logistics, MDPI, vol. 8(2), pages 1-19, April.
    3. Dominikus Kleindienst, 2017. "The data quality improvement plan: deciding on choice and sequence of data quality improvements," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 387-398, November.
    4. Duvier, Caroline & Neagu, Daniel & Oltean-Dumbrava, Crina & Dickens, Dave, 2018. "Data quality challenges in the UK social housing sector," International Journal of Information Management, Elsevier, vol. 38(1), pages 196-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    2. Caridi, Maria & Moretto, Antonella & Perego, Alessandro & Tumino, Angela, 2014. "The benefits of supply chain visibility: A value assessment model," International Journal of Production Economics, Elsevier, vol. 151(C), pages 1-19.
    3. Williams, Brent D. & Waller, Matthew A. & Ahire, Sanjay & Ferrier, Gary D., 2014. "Predicting retailer orders with POS and order data: The inventory balance effect," European Journal of Operational Research, Elsevier, vol. 232(3), pages 593-600.
    4. Yu, Yugang & Luo, Yifei & Shi, Ye, 2022. "Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    6. QU, Zhan & RAFF, Horst, 2023. "Two-part tariffs, inventory stockpiling, and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 308(1), pages 201-214.
    7. Miragliotta, Giovanni, 2006. "Layers and mechanisms: A new taxonomy for the Bullwhip Effect," International Journal of Production Economics, Elsevier, vol. 104(2), pages 365-381, December.
    8. Anantaram Balakrishnan & Joseph Geunes & Michael S. Pangburn, 2004. "Coordinating Supply Chains by Controlling Upstream Variability Propagation," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 163-183, July.
    9. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    10. Vijayasarathy, Leo R., 2010. "Supply integration: An investigation of its multi-dimensionality and relational antecedents," International Journal of Production Economics, Elsevier, vol. 124(2), pages 489-505, April.
    11. Zotteri, Giulio, 2013. "An empirical investigation on causes and effects of the Bullwhip-effect: Evidence from the personal care sector," International Journal of Production Economics, Elsevier, vol. 143(2), pages 489-498.
    12. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2015. "On returns and network configuration in supply chain dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 152-167.
    13. Carole Camisullis & Vincent Giard & Gisele Mendy-Bilek, 2010. "The information to share in upstream supply chains dedicated to mass production of customized products for allowing a decentralized management," Working Papers hal-00876993, HAL.
    14. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    15. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    16. Tsai, Chih-Yang, 2011. "On delineating supply chain cash flow under collectionrisk," International Journal of Production Economics, Elsevier, vol. 129(1), pages 186-194, January.
    17. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    18. Liang Guo & Ganesh Iyer, 2010. "Information Acquisition and Sharing in a Vertical Relationship," Marketing Science, INFORMS, vol. 29(3), pages 483-506, 05-06.
    19. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    20. Chu, Wai Hung Julius & Lee, Ching Chyi, 2006. "Strategic information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1567-1579, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:21:y:2011:i:2:d:10.1007_s12525-011-0059-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.