IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i2d10.1007_s10660-021-09513-9.html
   My bibliography  Save this article

Real-time bidding campaigns optimization using user profile settings

Author

Listed:
  • Luis Miralles-Pechuán

    (Technological University Dublin, Central Quad)

  • M. Atif Qureshi

    (Technological University Dublin)

  • Brian Mac Namee

    (University College Dublin)

Abstract

Real-Time bidding is nowadays one of the most promising systems in the online advertising ecosystem. In the presented study, the performance of RTB campaigns is improved by optimising the parameters of the users’ profiles and the publishers’ websites. Most studies about optimising RTB campaigns are focused on the bidding strategy; estimating the best value for each bid. However, our research is focused on optimising RTB campaigns by finding out configurations that maximise both the number of impressions and the average profitability of the visits. An online campaign configuration generally consists of a set of parameters along with their values such as {Browser = “Chrome”, Country = “Germany”, Age = “20–40” and Gender = “Woman”}. The experiments show that, when the number of required visits by advertisers is low, it is easy to find configurations with high average profitability, but as the required number of visits increases, the average profitability diminishes. Additionally, configuration optimisation has been combined with other interesting strategies to increase, even more, the campaigns’ profitability. In particular, the presented study considers the following complementary strategies to increase profitability: (1) selecting multiple configurations with a small number of visits rather than a unique configuration with a large number of visits, (2) discarding visits according to certain cost and profitability thresholds, (3) analysing a reduced space of the dataset and extrapolating the solution over the whole dataset, and (4) increasing the search space by including solutions below the required number of visits. The developed campaign optimisation methodology could be offered by RTB and other advertising platforms to advertisers to make their campaigns more profitable.

Suggested Citation

  • Luis Miralles-Pechuán & M. Atif Qureshi & Brian Mac Namee, 2023. "Real-time bidding campaigns optimization using user profile settings," Electronic Commerce Research, Springer, vol. 23(2), pages 1297-1322, June.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:2:d:10.1007_s10660-021-09513-9
    DOI: 10.1007/s10660-021-09513-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-021-09513-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-021-09513-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    2. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    2. Potoglou, Dimitris & Palacios, Juan & Feijoo, Claudio & Gómez Barroso, Jose-Luis, 2015. "The supply of personal information: A study on the determinants of information provision in e-commerce scenarios," 26th European Regional ITS Conference, Madrid 2015 127174, International Telecommunications Society (ITS).
    3. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    4. Randall Lewis & Dan Nguyen, 2015. "Display advertising’s competitive spillovers to consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 13(2), pages 93-115, June.
    5. Alex Jiyoung Kim & Subramanian Balachander, 2023. "Coordinating traditional media advertising and online advertising in brand marketing," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1865-1879, June.
    6. Daron Acemoglu & Ali Makhdoumi & Azarakhsh Malekian & Asu Ozdaglar, 2022. "Too Much Data: Prices and Inefficiencies in Data Markets," American Economic Journal: Microeconomics, American Economic Association, vol. 14(4), pages 218-256, November.
    7. Ryo Kato & Takahiro Hoshino & Daisuke Moriwaki & Shintaro Okazaki, 2022. "Mobile Targeting: Exploring the Role of Area Familiarity, Store Knowledge, and Promotional Incentives," Discussion Paper Series DP2022-10, Research Institute for Economics & Business Administration, Kobe University.
    8. Bayer, Emanuel & Srinivasan, Shuba & Riedl, Edward J. & Skiera, Bernd, 2020. "The impact of online display advertising and paid search advertising relative to offline advertising on firm performance and firm value," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 789-804.
    9. Zeng, Fue & Ye, Qing & Li, Jing & Yang, Zhilin, 2021. "Does self-disclosure matter? A dynamic two-stage perspective for the personalization-privacy paradox," Journal of Business Research, Elsevier, vol. 124(C), pages 667-675.
    10. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Sustaining a Good Impression: Mechanisms for Selling Partitioned Impressions at Ad Exchanges," Information Systems Research, INFORMS, vol. 31(1), pages 126-147, March.
    11. Wei Zhou & Zidong Wang, 2020. "Competing for Search Traffic in Query Markets: Entry Strategy, Platform Design, and Entrepreneurship," Working Papers 20-12, NET Institute.
    12. Muhammad Zahid Nawaz & Meng Tao & Hassan Ahmad & Md Jamirul Haque & Shahid Nawaz & Muhammad Nauman Shafique, 2020. "Youngsters and WMAs (WeChat Moments Advertisement): Do We Need the English Language in WMAs?," SAGE Open, , vol. 10(2), pages 21582440209, May.
    13. Idris Adjerid & Alessandro Acquisti & George Loewenstein, 2019. "Choice Architecture, Framing, and Cascaded Privacy Choices," Management Science, INFORMS, vol. 67(5), pages 2267-2290, May.
    14. Villanova, Daniel & Bodapati, Anand V. & Puccinelli, Nancy M. & Tsiros, Michael & Goodstein, Ronald C. & Kushwaha, Tarun & Suri, Rajneesh & Ho, Henry & Brandon, Renee & Hatfield, Cheryl, 2021. "Retailer Marketing Communications in the Digital Age: Getting the Right Message to the Right Shopper at the Right Time," Journal of Retailing, Elsevier, vol. 97(1), pages 116-132.
    15. Mark, Tanya & Bulla, Jan & Niraj, Rakesh & Bulla, Ingo & Schwarzwäller, Wolfgang, 2019. "Catalogue as a tool for reinforcing habits: Empirical evidence from a multichannel retailer," International Journal of Research in Marketing, Elsevier, vol. 36(4), pages 528-541.
    16. Anindya Ghose & Vilma Todri, 2015. "Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior," Working Papers 15-15, NET Institute.
    17. Mpinganjira, Mercy & Maduku, Daniel K., 2019. "Ethics of mobile behavioral advertising: Antecedents and outcomes of perceived ethical value of advertised brands," Journal of Business Research, Elsevier, vol. 95(C), pages 464-478.
    18. de Montjoye, Yves-Alexandre & Ramadorai, Tarun & Valletti, Tommaso & Walther, Ansgar, 2021. "Privacy, adoption, and truthful reporting: A simple theory of contact tracing applications," Economics Letters, Elsevier, vol. 198(C).
    19. Cloarec, Julien, 2020. "The personalization–privacy paradox in the attention economy," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    20. Xiang Hui & Meng Liu, 2022. "Quality Certificates Alleviate Consumer Aversion to Sponsored Search Advertising," CESifo Working Paper Series 9886, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:2:d:10.1007_s10660-021-09513-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.