IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v22y2022i3d10.1007_s10660-020-09408-1.html
   My bibliography  Save this article

Investigating participants’ attributes for participant estimation in knowledge-intensive crowdsourcing: a fuzzy DEMATEL based approach

Author

Listed:
  • Xuefeng Zhang

    (Anhui Polytechnic University)

  • Bengang Gong

    (Anhui Polytechnic University)

  • Yaqin Cao

    (Anhui Polytechnic University)

  • Yi Ding

    (Anhui Polytechnic University)

  • Jiafu Su

    (Chongqing Technology and Business University)

Abstract

In knowledge-intensive crowdsourcing (KI-C), estimating proper participants is an important way to ensure tasks crowdsourcing outcomes. Participants’ attributes (PAs) act as the main decision factors which are viewed as criteria for evaluating and estimating potential participants. Actually, multiple interdependent PAs have effect on participant estimation. It is an initial and vital work in estimating participants in KI-C to identify those PAs and measure their relationships. Consequently, this study first identifies PAs for participant estimation in KI-C by integrating PAs presented in the related academic studies and some practical KI-C sites. Subsequently, this study develops an integrated 2-tuple linguistic method and decision making trial and evaluation laboratory method to describe and measure causal relationships of the identified PAs. Identification of PAs would offer a common list of criteria for participant estimation in KI-C and aid to enrich studies in this field. Additionally, measurement of the PAs’ relationships through causality and prominence can assist requesters and managers of KI-C sites to understand and deal with those PAs in practical.

Suggested Citation

  • Xuefeng Zhang & Bengang Gong & Yaqin Cao & Yi Ding & Jiafu Su, 2022. "Investigating participants’ attributes for participant estimation in knowledge-intensive crowdsourcing: a fuzzy DEMATEL based approach," Electronic Commerce Research, Springer, vol. 22(3), pages 811-842, September.
  • Handle: RePEc:spr:elcore:v:22:y:2022:i:3:d:10.1007_s10660-020-09408-1
    DOI: 10.1007/s10660-020-09408-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-020-09408-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-020-09408-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jasneet Kaur & Ramneet Sidhu & Anjali Awasthi & Satyaveer Chauhan & Suresh Goyal, 2018. "A DEMATEL based approach for investigating barriers in green supply chain management in Canadian manufacturing firms," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 312-332, January.
    2. Yuxiang Zhao & Qinghua Zhu, 2014. "Evaluation on crowdsourcing research: Current status and future direction," Information Systems Frontiers, Springer, vol. 16(3), pages 417-434, July.
    3. Nguyen Hoang Thuan & Pedro Antunes & David Johnstone, 2016. "Factors influencing the decision to crowdsource: A systematic literature review," Information Systems Frontiers, Springer, vol. 18(1), pages 47-68, February.
    4. Ford, Robert C. & Richard, Brendan & Ciuchta, Michael P., 2015. "Crowdsourcing: A new way of employing non-employees?," Business Horizons, Elsevier, vol. 58(4), pages 377-388.
    5. Barry L. Bayus, 2013. "Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community," Management Science, INFORMS, vol. 59(1), pages 226-244, June.
    6. Sonja Marjanovic & Caroline Fry & Joanna Chataway, 2012. "Crowdsourcing based business models: In search of evidence for innovation 2.0," Science and Public Policy, Oxford University Press, vol. 39(3), pages 318-332, February.
    7. Christian Terwiesch & Yi Xu, 2008. "Innovation Contests, Open Innovation, and Multiagent Problem Solving," Management Science, INFORMS, vol. 54(9), pages 1529-1543, September.
    8. Tracy Xiao Liu & Jiang Yang & Lada A. Adamic & Yan Chen, 2014. "Crowdsourcing with All-Pay Auctions: A Field Experiment on Taskcn," Management Science, INFORMS, vol. 60(8), pages 2020-2037, August.
    9. Yiwei Gong, 2017. "Estimating participants for knowledge-intensive tasks in a network of crowdsourcing marketplaces," Information Systems Frontiers, Springer, vol. 19(2), pages 301-319, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Livio Cricelli & Michele Grimaldi & Silvia Vermicelli, 2022. "Crowdsourcing and open innovation: a systematic literature review, an integrated framework and a research agenda," Review of Managerial Science, Springer, vol. 16(5), pages 1269-1310, July.
    2. Dan Li & Longying Hu, 2017. "Exploring the effects of reward and competition intensity on participation in crowdsourcing contests," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 199-210, August.
    3. Hu, Feng & Bijmolt, Tammo H.A. & Huizingh, Eelko K.R.E., 2020. "The impact of innovation contest briefs on the quality of solvers and solutions," Technovation, Elsevier, vol. 90.
    4. Pallab Sanyal & Shun Ye, 2024. "An Examination of the Dynamics of Crowdsourcing Contests: Role of Feedback Type," Information Systems Research, INFORMS, vol. 35(1), pages 394-413, March.
    5. Patel, Chirag & Ahmad Husairi, Mariyani & Haon, Christophe & Oberoi, Poonam, 2023. "Monetary rewards and self-selection in design crowdsourcing contests: Managing participation, contribution appropriateness, and winning trade-offs," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Moghaddam, Ehsan Noorzad & Aliahmadi, Alireza & Bagherzadeh, Mehdi & Markovic, Stefan & Micevski, Milena & Saghafi, Fatemeh, 2023. "Let me choose what I want: The influence of incentive choice flexibility on the quality of crowdsourcing solutions to innovation problems," Technovation, Elsevier, vol. 120(C).
    7. Segev, Ella, 2020. "Crowdsourcing contests," European Journal of Operational Research, Elsevier, vol. 281(2), pages 241-255.
    8. Cappa, Francesco & Oriani, Raffaele & Pinelli, Michele & De Massis, Alfredo, 2019. "When does crowdsourcing benefit firm stock market performance?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    9. Dong Kunxiang & Sun Yan & Xie Zongxiao & Zhen Jie, 2020. "How to Bid Success in Crowdsourcing Contest? ― Evidence from the Translation Tasks of Tripadvisor," Journal of Systems Science and Information, De Gruyter, vol. 8(2), pages 170-184, April.
    10. Juncai Jiang & Yu Wang, 2020. "A Theoretical and Empirical Investigation of Feedback in Ideation Contests," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 481-500, February.
    11. Pollok, Patrick & Lüttgens, Dirk & Piller, Frank T., 2019. "Attracting solutions in crowdsourcing contests: The role of knowledge distance, identity disclosure, and seeker status," Research Policy, Elsevier, vol. 48(1), pages 98-114.
    12. Kamran-Disfani, Omid & Mantrala, Murali, 2024. "Can crowdsourcing improve prediction accuracy in fashion retail buying?," Journal of Retailing, Elsevier, vol. 100(3), pages 404-421.
    13. Elina H. Hwang & Param Vir Singh & Linda Argote, 2019. "Jack of All, Master of Some: Information Network and Innovation in Crowdsourcing Communities," Information Systems Research, INFORMS, vol. 30(2), pages 389-410, June.
    14. Cheng, Xi & Gou, Qinglong & Yue, Jinfeng & Zhang, Yan, 2019. "Equilibrium decisions for an innovation crowdsourcing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 241-260.
    15. Dargahi, Rambod & Namin, Aidin & Ketron, Seth C. & Saint Clair, Julian K., 2021. "Is self-knowledge the ultimate prize? A quantitative analysis of participation choice in online ideation crowdsourcing contests," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    16. Tat Koon Koh & Muller Y. M. Cheung, 2022. "Seeker Exemplars and Quantitative Ideation Outcomes in Crowdsourcing Contests," Information Systems Research, INFORMS, vol. 33(1), pages 265-284, March.
    17. Zhanwen Shi & Erbao Cao & Kai Nie, 2023. "Capacity pooling games in crowdsourcing services," Electronic Commerce Research, Springer, vol. 23(2), pages 1007-1047, June.
    18. Schenk, Eric & Guittard, Claude & Pénin, Julien, 2019. "Open or proprietary? Choosing the right crowdsourcing platform for innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 303-310.
    19. Yiwei Gong, 0. "Estimating participants for knowledge-intensive tasks in a network of crowdsourcing marketplaces," Information Systems Frontiers, Springer, vol. 0, pages 1-19.
    20. Yiwei Gong, 2017. "Estimating participants for knowledge-intensive tasks in a network of crowdsourcing marketplaces," Information Systems Frontiers, Springer, vol. 19(2), pages 301-319, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:22:y:2022:i:3:d:10.1007_s10660-020-09408-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.