IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v20y2020i2d10.1007_s10660-019-09377-0.html
   My bibliography  Save this article

Predicting consumer preferences in electronic market based on IoT and Social Networks using deep learning based collaborative filtering techniques

Author

Listed:
  • Sadaf Shamshoddin

    (King Saud University)

  • Jameel Khader

    (King Saud University)

  • Showkat Gani

    (King Saud University)

Abstract

Collaborative filtering plays an important role in predicting consumer preferences in the electronic market. Most of the users purchased the products in the electronic market with the help of the Internet of Things (IoT) and Social Networks. Predicting consumer preference with the consumer’s history is a vital challenge in the recommendation systems. The researchers propose varieties of collaborative filtering techniques, but the accuracy of the results is poor. The main aim of this paper is to propose a deep learning with collaborative filtering technique for the recommendation system to Predicting User preferences from the IoT devices and Social Networks that are beneficial for users based on their preferences in electronic markets. In this paper similarity, neighborhood-based collaborative filtering model (SN-CFM) is introduced. The introduced model recommends the products by predicting consumer preferences based on the similarity of the consumers and neighborhood products. In addition, the introduced deep learning concept gets the information from the previous analysis before making rating to the items. The introduced SN-CFM model compared with other existing recommendation approaches. The results prove that the efficiency of the introduced model.

Suggested Citation

  • Sadaf Shamshoddin & Jameel Khader & Showkat Gani, 2020. "Predicting consumer preferences in electronic market based on IoT and Social Networks using deep learning based collaborative filtering techniques," Electronic Commerce Research, Springer, vol. 20(2), pages 241-258, June.
  • Handle: RePEc:spr:elcore:v:20:y:2020:i:2:d:10.1007_s10660-019-09377-0
    DOI: 10.1007/s10660-019-09377-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-019-09377-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-019-09377-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiaying Liu & Tao Tang & Xiangjie Kong & Amr Tolba & Zafer AL-Makhadmeh & Feng Xia, 2018. "Understanding the advisor–advisee relationship via scholarly data analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 161-180, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    2. Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael J. P. Damaceno & Luciano Rossi & Rogério Mugnaini & Jesús P. Mena-Chalco, 2019. "The Brazilian academic genealogy: evidence of advisor–advisee relationships through quantitative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 303-333, April.
    2. Wuestman, Mignon & Wanzenböck, Iris & Frenken, Koen, 2023. "Local peer communities and future academic success of Ph.D. candidates," Research Policy, Elsevier, vol. 52(8).
    3. Tobias Koopmann & Maximilian Stubbemann & Matthias Kapa & Michael Paris & Guido Buenstorf & Tom Hanika & Andreas Hotho & Robert Jäschke & Gerd Stumme, 2021. "Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9847-9868, December.
    4. Dhananjay Kumar & Plaban Kumar Bhowmick & Sumana Dey & Debarshi Kumar Sanyal, 2023. "On the banks of Shodhganga: analysis of the academic genealogy graph of an Indian ETD repository," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3879-3914, July.
    5. Alaa Shoukry & Jameel Khader & Showkat Gani, 2021. "Improving business process and functionality using IoT based E3-value business model," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 17-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:20:y:2020:i:2:d:10.1007_s10660-019-09377-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.